Efficient Quantum Circuits For Non-Qubit Quantum Error-Correcting Codes

نویسندگان

  • Markus Grassl
  • Martin Rötteler
  • Thomas Beth
چکیده

We present two methods for the construction of quantum circuits for quantum errorcorrecting codes (QECC). The underlying quantum systems are tensor products of subsystems (qudits) of equal dimension which is a prime power. For a QECC encoding k qudits into n qudits, the resulting quantum circuit has O(n(n− k)) gates. The running time of the classical algorithm to compute the quantum circuit is O(n(n− k)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Error Correcting Codes

This thesis deals with quantum error correcting codes. In first two chapters necessary introduction to quantum computation and classical error correction is presented. Previous results on construction of quantum error correcting codes are presented in the third and fourth chapter. Mainly Calderbank-Steane-Shor (CSS) codes and stabilizer codes are discussed together with the introduction to codi...

متن کامل

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Pasting quantum codes

I describe a method for pasting together certain quantum error-correcting codes that correct one error to make a single larger one-error quantum code. I show how to construct codes encoding 7 qubits in 13 qubits using the method, as well as 15 qubits in 21 qubits and all the other “perfect” codes. 03.65.Bz,89.80.+h Typeset using REVTEX [email protected] 1 Quantum computers have a grea...

متن کامل

Simulating the Effects of Quantum Error-correction Schemes

It is important to protect quantum information against decoherence and operational errors, and quantum error-correcting (QEC) codes are the keys to solving this problem. Of course, just the existence of codes is not efficient. It is necessary to perform operations fault-tolerantly on encoded states because error-correction process (i.e., encoding, decoding, syndrome measurement and recovery) it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Found. Comput. Sci.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2003