Fluid mechanics produces conflicting, constraints during olfactory navigation of blue crabs, Callinectes sapidus.

نویسندگان

  • M J Weissburg
  • C P James
  • D L Smee
  • D R Webster
چکیده

Foraging blue crabs must respond to fluid forces imposed on their body while acquiring useful chemical signals from turbulent odor plumes. This study examines how blue crabs manage these simultaneous demands. The drag force, and hence the cost of locomotion, experienced by blue crabs is shown to be a function of the body orientation angle relative to the flow. Rather than adopting a fixed orientation that minimizes the drag, blue crabs decrease their relative angle (increase drag) when odor is present in low speed flow, while assuming a drag-minimizing posture under other conditions. The motivation for crabs to adopt an orientation with larger drag appears to relate to their ability to acquire chemical signal information for odor tracking. In particular, when orienting at a smaller angle relative to the flow direction, more concentrated odor filaments arrive at the antennules to mediate upstream movement, allowing a more useful bilateral comparison between the appendage chemosensors to be made. Blue crabs respond to conflicting demands by weighting the degree of drag minimization in proportion to the potential magnitude of the drag cost and the potential benefit of acquiring chemosensory cues. Higher flow velocity magnifies the locomotory cost of a high drag posture, thus in swift flows crabs minimize drag and sacrifice their ability to acquire olfactory cues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk of handling as a route of exposure to infectious waterborne Cryptosporidium parvum oocysts via Atlantic blue crabs (Callinectes sapidus).

Commercial Atlantic blue crabs (Callinectes sapidus) were exposed to 2.0x10(4) infectious waterborne oocysts of Cryptosporidium parvum. The study demonstrated that blue crabs can transfer C. parvum oocysts to persons involved in handling or preparing crabs and that they may contaminate other surfaces or products during storage.

متن کامل

Dine or dash? Turbulence inhibits blue crab navigation in attractive-aversive odor plumes by altering signal structure encoded by the olfactory pathway.

Blue crabs can distinguish and navigate to attractive (food) odors even when aversive odors (injured crab metabolites) are released nearby. Blue crabs in these conditions detect the aversive odor and avoid it, but find the attractive source with nearly the same success rate as when the attractive source is presented alone. Spatially and temporally distinct odor filaments appear to signal to for...

متن کامل

Sustaining olfaction at low salinities: mapping ion flux associated with the olfactory sensilla of the blue crab Callinectes sapidus.

To test the hypothesis of a diffusion-generated, ionic/osmotic microenvironment within the olfactory sensilla (aesthetascs), flux gradients of Ca(2+) and K(+) associated with the external surfaces of these sensilla were spatially mapped using self-referencing, ion-selective microelectrodes. Blue crabs (Callinectes sapidus) acclimated to low-salinity conditions (15% sea water and fresh water) sh...

متن کامل

Endogenous swimming rhythms underlying the spawning migration of the blue crab, Callinectes sapidus: ontogeny and variation with ambient tidal regime

Spawning female blue crabs, Callinectes sapidus, use ebb-tide transport (ETT) to migrate seaward. In estuaries with semi-diurnal tides, ETT in ovigerous blue crabs is driven by a circatidal rhythm in vertical swimming in which crabs ascend into the water column during ebb tide. The ontogeny of this rhythm was examined by monitoring swimming behavior of females before the pubertal molt, females ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003