A Study of Vandermonde-like Matrix Systems With Emphasis on Preconditioning and Krylov Matrix Connection

نویسندگان

  • Jyoti Saraswat
  • Hongguo Xu
چکیده

The study focuses primarily on Vandermonde-like matrix systems. The idea is to express Vandermonde and Vandermonde-like matrix systems as the problems related to Krylov Matrices. The connection provides a different angle to view the Vandermondelike systems. Krylov subspace methods are strongly related to polynomial spaces, hence a nice connection can be established using LU factorization as proposed by Bjorck and Pereyra [2] and QR factorization by Reichel [11]. Further an algorithm to generate a preconditioner is incorporated in GR algorithm given by Reichel [11]. This generates a preconditioner for Vandermonde-like matrices consisting of polynomials which obey a three term recurrence relation. This general preconditioner works effectively for Vandermonde matrices as well. The preconditioner is then tested on various distinct nodes. Based on results obtained, it is established that the condition number of Vandermonde -like matrices can be lowered significantly by application of the preconditioner, for some cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

A Different Approach to Bounding the Minimal Residual Norm in Krylov Methods

In the context of Krylov methods for solving systems of linear equations, expressions and bounds are derived for the norm of the minimal residual, like the one produced by GMRES or MINRES. It is shown that the minimal residual norm is large as long as the Krylov basis is well-conditioned. In the context of non-normal matrices, examples are given where the minimal residual norm is a function of ...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Preconditioning Newton- Krylov Methods for Variably Saturated Flow

In this paper, we compare the effectiveness of three preconditioning strategies in simulations of variably saturated flow. Using Richards’ equation as our model, we solve the nonlinear system using a Newton-Krylov method. Since Krylov solvers can stagnate, resulting in slow convergence, we investigate different strategies of preconditioning the Jacobian system. Our work uses a multigrid method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009