Motor transport of self-assembled cargos in crowded environments.
نویسندگان
چکیده
Intracellular transport of cargo particles is performed by multiple motors working in concert. However, the mechanism of motor association to cargos is unknown. It is also unknown how long individual motors stay attached, how many are active, and how multimotor cargos would navigate a densely crowded filament with many other motors. Prior theoretical and experimental biophysical model systems of intracellular cargo have assumed fixed teams of motors transporting along bare microtubules or microtubules with fixed obstacles. Here, we investigate a regime of cargos transporting along microtubules crowded with free motors. Furthermore, we use cargos that are able to associate or dissociate motors as it translocates. We perform in vitro motility reconstitution experiments with high-resolution particle tracking. Our model system consists of a quantum dot cargo attached to kinesin motors, and additional free kinesin motors that act as traffic along the microtubule. Although high densities of kinesin motors hinder forward motion, resulting in a lower velocity, the ability to associate motors appears to enhance the run length and attachment time of the quantum dot, improving overall cargo transport. These results suggest that cargos that can associate new motors as they transport could overcome traffic jams.
منابع مشابه
A model system to study transport of self-assembled cargos
Intracellular transport is the process by which cellular cargos, such as organelles and proteins, are moved throughout the cell. Motor proteins bind these cargos and walk along microtubule tracks to deliver them to specific regions of the cell. In axons, cargos are transported by either fast or slow axonal transport. Fast axonal transport is performed by fixed teams of motors bound to membranou...
متن کاملEnvironmental control of microtubule-based bidirectional cargo-transport
Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show th...
متن کاملActive and passive transport of cargo in a corrugated channel: A lattice model study.
Inside cells, cargos such as vesicles and organelles are transported by molecular motors to their correct locations via active motion on cytoskeletal tracks and passive, Brownian diffusion. During the transportation of cargos, motor-cargo complexes (MCCs) navigate the confining and crowded environment of the cytoskeletal network and other macromolecules. Motivated by this, we study a minimal tw...
متن کاملAxonal transport defects are a common phenotype in Drosophila models of ALS
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons resulting in a catastrophic loss of motor function. Current therapies are severely limited owing to a poor mechanistic understanding of the pathobiology. Mutations in a large number of genes have now been linked to ALS, including SOD1, TARDBP (TDP-43), FUS and C9orf72. Functional analyses of these genes an...
متن کاملConsequences of Motor Copy Number on the Intracellular Transport of Kinesin-1-Driven Lipid Droplets
The microtubule motor kinesin-1 plays central roles in intracellular transport. It has been widely assumed that many cellular cargos are moved by multiple kinesins and that cargos with more motors move faster and for longer distances; concrete evidence, however, is sparse. Here we rigorously test these notions using lipid droplets in Drosophila embryos. We first employ antibody inhibition, gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 51 شماره
صفحات -
تاریخ انتشار 2012