Fibrin Association at Hybrid Biointerfaces Made of Clot-Binding Peptides and Polythiophene.
نویسندگان
چکیده
The properties as biointerfaces of electroactive conducting polymer-peptide biocomposites formed by poly(3,4-ethylenedioxythiophene) (PEDOT) and CREKA or CR(NMe)EKA peptide sequences (where Glu has been replaced by N-methyl-Glu in the latter) have been compared. CREKA is a linear pentapeptide that recognizes clotted plasma proteins and selectively homes to tumors, while CR(NMe)EKA is an engineer to improve such properties by altering peptide-fibrin interactions. Differences between PEDOT-CREKA and PEDOT-CR(NMe)EKA reflect dissemblance in the organization of the peptides into the polymeric matrix. Both peptides affect fibrinogen thrombin-catalyzed polymerization causing the immediate formation of fibrin, whereas in the absence of thrombin this phenomenon is only observed for CR(NMe)EKA. Consistently, the fibrin-adsorption capacity is higher for PEDOT-CR(NMe)EKA than for PEDOT-CREKA, even though in both cases adsorbed fibrin exhibits round-like morphologies rather than the characteristic fibrous structure. PEDOT-peptide films coated with fibrin are selective in terms of cell adhesion, promoting the attachment of metastatic cells with respect to normal cells.
منابع مشابه
The effect of peptides and monoclonal antibodies that bind to platelet glycoprotein IIb-IIIa complex on the development of clot tension.
The development of tension in platelet-rich clots is a manifestation of fibrin polymer binding to platelets as well as platelet contractile activity. Arg-Gly-Asp(RGD)-containing peptides of fibrinogen alpha-chain and gamma-400-411 of fibrinogen gamma chain increased clot tension considerably, especially when it developed under isometric conditions. Morphometry revealed increased confluence of o...
متن کاملBinding of synthetic B knobs to fibrinogen changes the character of fibrin and inhibits its ability to activate tissue plasminogen activator and its destruction by plasmin.
Synthetic peptides corresponding to the amino-terminal sequence of the beta chain of fibrin increase the turbidity of fibrin clots, whether they are generated by the direct interaction of thrombin and fibrinogen or by the reassociation of fibrin monomers. The turbidity of batroxobin-induced clots, which are characteristically "fine," is increased even more dramatically. Pentapeptides are more e...
متن کاملEffects of actin filaments on fibrin clot structure and lysis.
The muscle and cytoskeletal protein actin is released from cells as a consequence of cell death and interacts with components of the hemostatic and fibrinolytic systems, including platelets, plasmin, and fibrin. We report here that incorporation of actin filaments into fibrin clots changes their viscoelastic properties by increasing their shear modulus at low deforming stresses and by nearly el...
متن کاملFactor XIIa regulates the structure of the fibrin clot independently of thrombin generation through direct interaction with fibrin.
Recent data indicate an important contribution of coagulation factor (F)XII to in vivo thrombus formation. Because fibrin structure plays a key role in clot stability and thrombosis, we hypothesized that FXII(a) interacts with fibrin(ogen) and thereby regulates clot structure and function. In plasma and purified system, we observed a dose-dependent increase in fibrin fiber density and decrease ...
متن کاملRequirements for a 5 b 1 Integrin - mediated Retraction of Fibronectin - Fibrin Matrices
Retraction of the blood clot by nucleated cells contributes both to hemostasis and to tissue remodeling. Although plasma fibronectin (FN) is a key component of the clot, its role in clot retraction is unclear. In this report, we demonstrate that the incorporation of FN into fibrin matrices significantly improves clot retraction by nucleated cells expressing the integrin a5b1. Further, we show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular bioscience
دوره 16 10 شماره
صفحات -
تاریخ انتشار 2016