14-3-3β regulates the proliferation of glioma cells through the GSK3β/β-catenin signaling pathway.
نویسندگان
چکیده
We previously demonstrated that 14-3-3β is overexpressed in astrocytomas; however, the underlying mechanisms are poorly understood. Based on the reported multiple functions of 14-3-3β, we hypothesized that it interacts with glycogen synthase kinase 3 β (GSK3β), which regulates β-catenin-mediated oncogene expression and contributes to tumorigenesis and astrocytoma progression. To test these hypotheses, we used 14-3-3β overexpression vectors and small interfering RNA (siRNA) transfection in the human normal astrocyte cell line SVGp12 and the glioma cell line U87, respectively. The results showed that overexpression of 14-3-3β promoted the proliferation of SVGp12 cells, while knockdown of 14-3-3β inhibited the proliferation of U87 cells as analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. In Flag-tagged 14-3-3β-overexpressing cells, GSK3β was co-immunoprecipitated with 14-3-3β using a Flag antibody. Knockdown of β-catenin by siRNA blocked cell proliferation induced by overexpression of 14-3-3β. Furthermore, overexpression of 14-3-3β suppressed the phosphorylation of β-catenin leading to its accumulation and nuclear translocation as revealed by western blot analysis. In addition, β-catenin nuclear translocation induced by overexpression of 14-3-3β activated the transcription of oncogenes including c-myc and cyclin D1. Collectively, these results revealed that 14-3-3β regulates the proliferation of astrocytes and glioma cells through the GSK3β/β-catenin signaling pathway. The delineated mechanism of 14-3-3β may be responsible for the tumorigenesis and progression of human astrocytomas. Thus, new therapeutic strategies or drugs aimed at 14-3-3β may have potential for the treatment of human astrocytomas.
منابع مشابه
TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملThe Effect of Mesenchymal Stem Cell and Aerobic Exercise on the Expression of β-catenin and GSK-3β Genes in Heart Tissue of Rats in the Experimental Model of Knee Osteoarthritis
Introduction: Proliferation has long been the main source of mesenchymal stem cells (MSCs) in tissue repair , cell therapy and tissue engineering strategies. On the other hand, regular exercise as part of a person’s daily routine may help manage pathological conditions. The aim of this study was to investigate the effect of mesenchymal stem cell injection and aerobic exercise on the expression ...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملPCDH8 inhibits glioma cell proliferation by negatively regulating the AKT/GSK3β/β-catenin signaling pathway
Protocadherin-8 (PCDH8), a member of the protocadherin superfamily of proteins, is frequently lost in numerous types of cancer. However, the role that PCDH8 serves in human glioma, and the molecular mechanisms underlying this, remain unclear. Data from the present study demonstrated that the expression levels of PCDH8 mRNA and protein were significantly decreased in human glioma tissue compared...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2013