Coloring d-Embeddable k-Uniform Hypergraphs
نویسندگان
چکیده
This paper extends the scenario of the Four Color Theorem in the following way. LetHd,k be the set of all k-uniform hypergraphs that can be (linearly) embedded into Rd . We investigate lower and upper bounds on the maximum (weak and strong) chromatic number of hypergraphs in Hd,k. For example, we can prove that for d ≥ 3 there are hypergraphs inH2d−3,d on n vertices whose weak chromatic number is Ω(log n/ log log n), whereas the weak chromatic number for n-vertex hypergraphs inHd,d is bounded by O (n(d−2)/(d−1)) for d ≥ 3.
منابع مشابه
Coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-Embeddable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Uniform Hypergraphs
This paper extends the scenario of the Four Color Theorem in the following way. Let [Formula: see text] be the set of all [Formula: see text]-uniform hypergraphs that can be (linearly) embedded into [Formula: see text]. We investigate lower and upper bounds on the maximum (weak) chromatic number of hypergraphs in [Formula: see text]. For example, we can prove that for [Formula: see text] there ...
متن کاملList Coloring Hypergraphs
Let H be a hypergraph and let Lv : v ∈ V (H) be sets; we refer to these sets as lists and their elements as colors. A list coloring of H is an assignment of a color from Lv to each v ∈ V (H) in such a way that every edge of H contains a pair of vertices of different colors. The hypergraph H is k-list-colorable if it has a list coloring from any collection of lists of size k. The list chromatic ...
متن کاملCovering complete partite hypergraphs by monochromatic components
A well-known special case of a conjecture attributed to Ryser (actually appeared in the thesis of Henderson [7]) states that k-partite intersecting hypergraphs have transversals of at most k−1 vertices. An equivalent form of the conjecture in terms of coloring of complete graphs is formulated in [1]: if the edges of a complete graph K are colored with k colors then the vertex set of K can be co...
متن کاملA Paintability Version of the Combinatorial Nullstellensatz, and List Colorings of k-partite k-uniform Hypergraphs
We study the list coloring number of k-uniform k-partite hypergraphs. Answering a question of Ramamurthi and West, we present a new upper bound which generalizes Alon and Tarsi’s bound for bipartite graphs, the case k = 2. Our results hold even for paintability (on-line list colorability). To prove this additional strengthening, we provide a new subject-specific version of the Combinatorial Nul...
متن کاملRamsey Properties of Random k-Partite, k-Uniform Hypergraphs
We investigate the threshold probability for the property that every r-coloring of the edges of a random binomial k-uniform hypergraph G(k)(n, p) yields a monochromatic copy of some fixed hypergraph G. In this paper we solve the problem for arbitrary k ≥ 3 and k-partite, k-uniform hypergraphs G.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 52 شماره
صفحات -
تاریخ انتشار 2014