A straightening algorithm for row-convex tableaux

نویسنده

  • Brian D. Taylor
چکیده

We produce a new basis for the Schur and Weyl modules associated to a row-convex shape D. The basis is indexed by new class of \straight" tableaux which we introduce by weakening the usual requirements for standard tableaux. Spanning is proved via a new straightening algorithm for expanding elements of the representation into this basis. For skew shapes, this algorithm specializes to the classical straightening law. The new straight basis is used to produce bases for agged Schur and Weyl modules, to provide Groebner and sagbi bases for the homogeneous coordinate rings of some con guration varieties and to produce a agged branching rule for row-convex representations. Systematic use of supersymmetric letterplace techniques enables the representation theoretic results to be applied to representations of the general linear Lie superalgebra as well as to the general linear group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Straightening Laws for Row-Convex Tableaux

We introduce the notion of a straight tableau and prove that the straight tableaux of xed row-convex shape form a basis for the GL n -representations and the general linear Lie superalgebra representations associated to the given shape. We provide a straightening algorithm for expressing arbitrary tableaux in terms of straight tableaux. These techniques can be modi ed to provide bases for repre...

متن کامل

GENERALIZED STRAIGHTENING LAWS FOR PRODUCTS OF DETERMINANTS by BRIAN

The (semi)standard Young tableau have been known since Hodge and Littlewood to naturally index a basis for the multihomogeneous coordinate rings of flag varieties under the Plicker embedding. In representation theory, the irreducible representations of GL,(C) arise as the multihomogeneous components of these rings. I introduce a new class of straight tableau by slightly weakening the requiremen...

متن کامل

Generalized Straightening Laws for Products of Determinants

The (semi)standard Young tableau have been known since Hodge and Littlewood to naturally index a basis for the multihomogeneous coordinate rings of flag varieties under the Plücker embedding. In representation theory, the irreducible representations of GLn(C) arise as the multihomogeneous components of these rings. I introduce a new class of straight tableau by slightly weakening the requiremen...

متن کامل

The Robinson-Schensted correspondence as the quantum straightening at q=0

We show that the quantum straightening algorithm for Young tableaux and Young bitableaux reduces in the crystal limit q 7 ! 0 to the Robinson-Schensted algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999