Fourier Series of Orthogonal Polynomials

نویسنده

  • NATANIEL GREENE
چکیده

It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal polynomial to the Legendre polynomials to derive explicit formulas. Although we detail the formulas for the classical orthogonal polynomials, the method can be used to write explicit Fourier coef cients for any class of polynomials. The formulas were developed by this author, Greene [11], in studying the Gegenbauer reconstruction method of Gottlieb and Shu [7, 8, 9, 10], which is a technique for overcoming the spurious oscillations known as the Gibbs phenomenon which occur in Fourier and orthogonal polynomial approximations to piecewise smooth functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formulas for the Fourier Series of Orthogonal Polynomials in Terms of Special Functions

—An explicit formula for the Fourier coef cients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials. The methods described here apply in principle to an...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

2 9 Ja n 20 04 MEAN CONVERGENCE OF ORTHOGONAL FOURIER SERIES AND INTERPOLATING POLYNOMIALS

For a family of weight functions that include the general Jacobi weight functions as special cases, exact condition for the convergence of the Fourier orthogonal series in the weighted L space is given. The result is then used to establish a Marcinkiewicz-Zygmund type inequality and to study weighted mean convergence of various interpolating polynomials based on the zeros of the corresponding o...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Summability of Fourier Orthogonal Series for Jacobi Weight on a Ball in R

Fourier orthogonal series with respect to the weight function (1 − |x|2)μ−1/2 on the unit ball in Rd are studied. Compact formulae for the sum of the product of orthonormal polynomials in several variables and for the reproducing kernel are derived and used to study the summability of the Fourier orthogonal series. The main result states that the expansion of a continuous function in the Fourie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008