Toward an understanding of the mechanism of nonphotochemical quenching in green plants.
نویسندگان
چکیده
Oxygenic photosynthesis in plants involves highly reactive intermediates and byproducts that can damage the photosynthetic apparatus and other chloroplast constituents. The potential for damage is exacerbated when the amount of absorbed light exceeds the capacity for light energy utilization in photosynthesis, a condition that can lead to decreases in photosynthetic efficiency. A feedback de-excitation mechanism (qE), measured as a component of nonphotochemical quenching of chlorophyll fluorescence, regulates photosynthetic light harvesting in excess light in response to a change in thylakoid lumen pH. qE involves de-excitation of the singlet excited state of chlorophyll in the light-harvesting antenna of photosystem II, thereby minimizing the deleterious effects of high light via thermal dissipation of excess excitation energy. While the physiological importance of qE has been recognized for many years, a description of its physical mechanism remains elusive. We summarize recent biochemical and spectroscopic results that have brought us closer to the goal of a mechanistic understanding of this fundamental photosynthetic regulatory process.
منابع مشابه
Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants.
Whole spinach (Spinacia oleracea) plants were subjected to heat stress (25 degrees C-50 degrees C) in the dark for 30 min. At temperatures higher than 35 degrees C, CO2 assimilation rate decreased significantly. The maximal efficiency of photosystem II (PSII) photochemistry remained unchanged until 45 degrees C and decreased only slightly at 50 degrees C. Nonphotochemical quenching increased si...
متن کاملRegulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence).
ce has become one of the most powerful methods for assessing photosynthetic performance in plant physiological experiments (Horton and Bowyer, 1990; Krause and Weis, 1991). This has resulted almost entirely from the development of methods to distinguish photochemical and nonphotochemical quenching of fluorescence. Moreover, it is now clear that the process of nonphotochemical quenching itself i...
متن کاملRsc_cp_c1cp20331b 1..9
In 2005, it was found that the fluorescence of crystals of the major light-harvesting complex LHCII of green plants is significantly quenched when compared to the fluorescence of isolated LHCII (A. A. Pascal et al., Nature, 2005, 436, 134–137). The Raman spectrum of crystallized LHCII was also found to be different from that of isolated LHCII but very similar to that of aggregated LHCII, which ...
متن کاملNonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii.
Unlike plants, Chlamydomonas reinhardtii shows a restricted ability to develop nonphotochemical quenching upon illumination. Most of this limited quenching is due to state transitions instead of DeltapH-driven high-energy state quenching, qE. The latter could only be observed when the ability of the cells to perform photosynthesis was impaired, either by lowering temperature to approximately 0 ...
متن کاملA minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence
Under natural conditions, plants are exposed to rapidly changing light intensities. To acclimate to such fluctuations, plants have evolved adaptive mechanisms that optimally exploit available light energy and simultaneously minimise damage of the photosynthetic apparatus through excess light. An important mechanism is the dissipation of excess excitation energy as heat which can be measured as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 43 26 شماره
صفحات -
تاریخ انتشار 2004