Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases
نویسندگان
چکیده
DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription.
منابع مشابه
Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.
DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while oth...
متن کاملIdentification of specific contacts in T3 RNA polymerase-promoter interactions: kinetic analysis using small synthetic promoters.
The T7, T3, and SP6 RNA polymerases recognize very similar, yet distinct, promoter sequences. The high homology among the promoter sequences suggests that differential promoter recognition must derive from relatively small changes in the protein. Steady-state kinetic analyses of transcription from the T3 consensus promoter and from promoters modified in the region critical to specific recogniti...
متن کاملEpigenetic Modifications of Host Genes Induced by Bacterial Infection
Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...
متن کاملDeformations of promoter DNA bound to carcinogens help interpret effects on TATA-element structure and activity.
The TATA-box binding protein (TBP) is required by eukaryotic RNA polymerases for correct transcription initiation. TBP binds to the minor groove of an 8 base pair (bp) DNA-promoter element known as the TATA box and severely bends the TATA box. The promoter-DNA substrate can be damaged by components present in the cell or the environment to produce covalent carcinogen-DNA adducts. These may lead...
متن کاملFunctional significance of the TATA element major groove in transcription initiation by RNA polymerase II.
The binding of TFIID to the TATA element initiates assembly of a preinitiation complex and thus represents one of the most important steps for transcriptional regulation. The fact that the TATA binding protein (TBP), a subunit of TFIID, exclusively contacts the minor groove of the TATA element led us to ask whether the major groove of the TATA element plays any role in transcription initiation ...
متن کامل