Membrane Fluidity and Temperature Sensing Are Coupled via Circuitry Comprised of Ole1, Rsp5, and Hsf1 in Candida albicans

نویسندگان

  • Michelle D. Leach
  • Leah E. Cowen
چکیده

Temperature is a ubiquitous environmental variable which can profoundly influence the physiology of living cells as it changes over time and space. When yeast cells are exposed to a sublethal heat shock, normal metabolic functions become repressed and the heat shock transcription factor Hsf1 is activated, inducing heat shock proteins (HSPs). Candida albicans, the most prevalent human fungal pathogen, is an opportunistic pathogen that has evolved as a relatively harmless commensal of healthy individuals. Even though C. albicans occupies thermally buffered niches, it has retained the classic heat shock response, activating Hsf1 during slow thermal transitions such as the increases in temperature suffered by febrile patients. However, the mechanism of temperature sensing in fungal pathogens remains enigmatic. A few studies with Saccharomyces cerevisiae suggest that thermal stress is transduced into a cellular signal at the level of the membrane. In this study, we manipulated the fluidity of C. albicans membrane to dissect mechanisms of temperature sensing. We determined that in response to elevated temperature, levels of OLE1, encoding a fatty acid desaturase, decrease. Subsequently, loss of OLE1 triggers expression of FAS2, encoding a fatty acid synthase. Furthermore, depletion of OLE1 prevents full activation of Hsf1, thereby reducing HSP expression in response to heat shock. This reduction in Hsf1 activation is attributable to the E3 ubiquitin ligase Rsp5, which regulates OLE1 expression. To our knowledge, this is the first study to define a molecular link between fatty acid synthesis and the heat shock response in the fungal kingdom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans

Fever is a universal response to infection, and opportunistic pathogens such as Candida albicans have evolved complex circuitry to sense and respond to heat. Here we harness RNA-seq and ChIP-seq to discover that the heat shock transcription factor, Hsf1, binds distinct motifs in nucleosome-depleted promoter regions to regulate heat shock genes and genes involved in virulence in C. albicans. Con...

متن کامل

Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals

All organisms have evolved mechanisms that protect them against environmental stress. The major fungal pathogen of humans, Candida albicans, has evolved robust stress responses that protect it against human immune defences and promote its pathogenicity. However, C. albicans is unlikely to be exposed to heat shock as it is obligatorily associated with warm-blooded animals. Therefore, we examined...

متن کامل

Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans

The evolutionarily conserved heat shock transcription factor Hsf1 plays a central role in thermal adaptation in the major fungal pathogen of humans, Candida albicans. Hsf1 becomes hyperphosphorylated in response to heat shock and activates the transcription of genes with heat shock elements (HSEs) in their promoters, these genes contributing to thermal adaptation. However, the relevance of Hsf1...

متن کامل

Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space

The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temp...

متن کامل

Membrane fluidity and lipid composition of fluconazole resistant and susceptible strains of Candida albicans isolated from diabetic patients

Ten clinical isolates of Candida albicans, five strains belonging to each of fluconazole resistant and susceptible groups isolated from diabetic patients, were studied for the membrane fluidity and lipid composition. Compared to fluconazole susceptible strains, fluconazole resistant ones exhibited enhanced membrane fluidity as measured by fluorescence polarization technique. The increased membr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014