Robust TSK fuzzy modeling for function approximation with outliers
نویسندگان
چکیده
The Takagi–Sugeno–Kang (TSK) type of fuzzy models has attracted a great attention of the fuzzy modeling community due to their good performance in various applications. Various approaches for modeling TSK fuzzy rules have been proposed in the literature. Most of them define their fuzzy subspaces based on the idea of training data being close enough instead of having similar functions. Besides, in real world applications, training data sets often contain outliers. When outliers exist, traditional clustering and learning algorithms based on the principle of least square error minimization may be seriously affects by outliers. Various robust approaches have been proposed to solve this problem in the neural networks and pattern recognition community. In this paper, a novel robust TSK fuzzy modeling approach is presented. In the approach, a clustering algorithm termed as robust fuzzy regression agglomeration (RFRA) is proposed to define fuzzy subspaces in a fuzzy regression manner with robust capability against outliers. To obtain a more precision model, a robust fine-tuning algorithm is then employed. Various examples are used to verify the effectiveness of the proposed approach. From the simulation results, the proposed robust TSK fuzzy modeling indeed showed superior performance over other approaches.
منابع مشابه
Robust Proper Clustering Structure Fuzzy Modeling for Function Approximation
Traditional approaches for modeling TSK fuzzy rules are trying to adjust the parameters in models, and not considering the training data distribution. Hence it will result in an improper clustering structure, especially, when outliers exist. In this paper, a clustering algorithm termed as Robust Proper Structure Fuzzy Regression Algorithm (RPSFR) is proposed to define fuzzy subspaces in a fuzzy...
متن کاملRobust TSK Fuzzy Modeling with Proper Clustering Structure
Traditional approaches for modeling TSK fuzzy rules are trying to adjust the parameters in models, and not considering the training data distribution. Hence it will result in an improper clustering structure, especially, when outliers exist. In this paper, a clustering algorithm termed as Robust Proper Structure Fuzzy Regression Algorithm (RPSFR) is proposed to define fuzzy subspaces in a fuzzy...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملRobustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملFuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets
Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set. If we have fuzzy observations, using ordinal regression methods can't model them; In this case, using fuzzy regression is a good method. When observations are fuzzy and there are outliers in the data sets, using robust fuzzy regression methods are appropriate alternatives....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2001