A Simple Factor-2/3 Approximation Algorithm for Two-Circle Point Labeling

نویسندگان

  • Alexander Wolff
  • Michael Thon
  • Yin-Feng Xu
چکیده

Given a set P of n points in the plane, the two-circle point-labeling problem consists of placing 2n uniform, non-intersecting, maximum-size open circles such that each point touches exactly two circles. It is known that this problem is NP-hard to approximate. In this paper we give a simple algorithm that improves the best previously known approximation factor from 4/(1 + √ 33) ≈ 0.5931 to 2/3. The main steps of our algorithm are as follows. We first compute the Voronoi diagram, then label each point optimally within its cell, compute the smallest label diameter over all points and finally shrink all labels to this size. We keep the O(n log n) time and O(n) space bounds of the previously best algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Algorithms for Two-Label Point Labeling

Given a label shape L and a set of n points in the plane, the 2-label point-labeling problem consists of placing 2n non-intersecting translated copies of L of maximum size such that each point touches two unique copies—its labels. In this paper we give new and simple approximation algorithms for L an axis-parallel square or a circle. For squares we improve the best previously known approximatio...

متن کامل

Approximation Algorithm for Two-circle Point Labeling

Given a set P of n points in the plane, the two-circle point-labeling problem consists of placing 2n uniform, non-intersecting, maximum-size open circles such that each point touches exactly two circles. It is known that this problem is NP-hard to approximate. In this paper we give a simple algorithm that improves the best previously known approximation factor from 4 1+ √ 33 ≈ 0.5931 to 2 3 . T...

متن کامل

New Bounds on Map Labeling with Circular Labels

We present new approximation algorithms for the NP-hard problems of labeling points with maximum-size uniform circles and circle pairs (MLUC and MLUCP). Our algorithms build on the important concept of maximal feasible region and new algorithmic techniques. We obtain several results: a (2.98 + )-approximation for MLUC, improving previous factor 3.0+ ; a (1.491+ )-approximation for MLUCP, improv...

متن کامل

Map Labeling with Circles

We study two geometric optimization problems motivated by cartographic applications: Map Labeling with Uniform Circles (MLUC) and Map Labeling with Uniform Circle Pairs (MLUCP). We show that the decision problems of both MLUC and MLUCP are NP-hard, and that the related optimization problems for maximizing the label sizes are NP-hard to approximate within factor 1.0349. We design approximation a...

متن کامل

A new bound for map labeling with uniform circle pairs

Given a planar point set, we wish to label the points with uniform circular labels such that each input point lies on the boundary of two labels, none of the interiors of the labels intersect, and the size of the labels is maximized. This problem is known as map-labeling with uniform circular pairs (MLUCP) and has been shown to be NP-hard. In this paper, we give an O(n logn) time, O(n) space al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002