DUTIR in BioNLP-ST 2016: Utilizing Convolutional Network and Distributed Representation to Extract Complicate Relations

نویسندگان

  • Honglei Li
  • Jianhai Zhang
  • Jian Wang
  • Hongfei Lin
  • Zhihao Yang
چکیده

We participate in the two event extraction tasks of BioNLP 2016 Shared Task: binary relation extraction of SeeDev task and localization relations extraction of Bacteria Biotope task. Convolutional neural network (CNN) is employed to model the sentences by convolution and maxpooling operation from raw input with word embedding. Then, full connected neural network is used to learn senior and significant features automatically. The proposed model mainly contains two modules: distributive semantic representation building, such as word embedding, POS embedding, distance embedding and entity type embedding, and CNN model training. The results with F-score of 0.370 and 0.478 in our participant tasks, which were evaluated on the test data set, show that our proposed method contributes to binary relation extraction effectively and can reduce the impact of artificial feature engineering through automatically feature learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CliqueCNN: Deep Unsupervised Exemplar Learning

Exemplar learning is a powerful paradigm for discovering visual similarities in an unsupervised manner. In this context, however, the recent breakthrough in deep learning could not yet unfold its full potential. With only a single positive sample, a great imbalance between one positive and many negatives, and unreliable relationships between most samples, training of Convolutional Neural networ...

متن کامل

Extraction of Regulatory Events using Kernel-based Classifiers and Distant Supervision

This paper describes our system to extract binary regulatory relations from text, used to participate in the SeeDev task of BioNLP-ST 2016. Our system was based on machine learning, using support vector machines with a shallow linguistic kernel to identify each type of relation. Additionally, we employed a distant supervised approach to increase the size of the training data. Our submission obt...

متن کامل

Learning to Extract Motion from Videos in Convolutional Neural Networks

This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, e.g. for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image c...

متن کامل

GRO Task: Populating the Gene Regulation Ontology with events and relations

Semantic querying over the biomedical literature has gained popularity, where a semantic representation of biomedical documents is required. Previous BioNLP Shared Tasks exercised semantic event extraction with a small number of pre-defined event concepts. The GRO task of the BioNLP’13-ST imposes the challenge of dealing with over 100 GRO concepts. Its annotated corpus consists of 300 MEDLINE a...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016