Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats?
نویسندگان
چکیده
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging.
منابع مشابه
Camouflage through colour change: mechanisms, adaptive value and ecological significance
Animals from a wide range of taxonomic groups are capable of colour change, of which camouflage is one of the main functions. A considerable amount of past work on this subject has investigated species capable of extremely rapid colour change (in seconds). However, relatively slow colour change (over hours, days, weeks and months), as well as changes arising via developmental plasticity are pro...
متن کاملThe scaling effects of substrate texture on camouflage patterning in cuttlefish
Camouflage is the primary defense in cuttlefish. The rich repertoire of their body patterns can be categorized into three types: uniform, mottle, and disruptive. Several recent studies have characterized spatial features of substrates responsible for eliciting these body patterns on natural and artificial backgrounds. In the present study, we address the role of spatial scales of substrate text...
متن کاملEvidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.
We report that the skin of cuttlefish, Sepia officinalis, contains opsin transcripts suggesting a possible role of distributed light sensing for dynamic camouflage and signalling. The mRNA coding for opsin from various body regions was amplified and sequenced, and gene expression was detected in fin and ventral skin samples. The amino acid sequence of the opsin polypeptide that these transcript...
متن کاملIntraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage
Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) ...
متن کاملRockpool Gobies Change Colour for Camouflage
Camouflage is found in a wide range of species living in numerous habitat types, offering protection from visually guided predators. This includes many species from the intertidal zone, which must cope with background types diverse in appearance and with multiple predator groups foraging at high and low tide. Many animals are capable of either relatively slow (hours, days, weeks) or rapid (seco...
متن کامل