Estimating Marginal Healthcare Costs Using Genetic Variants as Instrumental Variables: Mendelian Randomization in Economic Evaluation
نویسندگان
چکیده
Accurate measurement of the marginal healthcare costs associated with different diseases and health conditions is important, especially for increasingly prevalent conditions such as obesity. However, existing observational study designs cannot identify the causal impact of disease on healthcare costs. This paper explores the possibilities for causal inference offered by Mendelian randomization, a form of instrumental variable analysis that uses genetic variation as a proxy for modifiable risk exposures, to estimate the effect of health conditions on cost. Well-conducted genome-wide association studies provide robust evidence of the associations of genetic variants with health conditions or disease risk factors. The subsequent causal effects of these health conditions on cost can be estimated using genetic variants as instruments for the health conditions. This is because the approximately random allocation of genotypes at conception means that many genetic variants are orthogonal to observable and unobservable confounders. Datasets with linked genotypic and resource use information obtained from electronic medical records or from routinely collected administrative data are now becoming available and will facilitate this form of analysis. We describe some of the methodological issues that arise in this type of analysis, which we illustrate by considering how Mendelian randomization could be used to estimate the causal impact of obesity, a complex trait, on healthcare costs. We describe some of the data sources that could be used for this type of analysis. We conclude by considering the challenges and opportunities offered by Mendelian randomization for economic evaluation.
منابع مشابه
Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects
A conventional Mendelian randomization analysis assesses the causal effect of a risk factor on an outcome by using genetic variants that are solely associated with the risk factor of interest as instrumental variables. However, in some cases, such as the case of triglyceride level as a risk factor for cardiovascular disease, it may be difficult to find a relevant genetic variant that is not als...
متن کاملBeyond Mendelian randomization: how to interpret evidence of shared genetic predictors.
OBJECTIVE Mendelian randomization is a popular technique for assessing and estimating the causal effects of risk factors. If genetic variants which are instrumental variables for a risk factor are shown to be additionally associated with a disease outcome, then the risk factor is a cause of the disease. However, in many cases, the instrumental variable assumptions are not plausible, or are in d...
متن کاملUse of allele scores as instrumental variables for Mendelian randomization
BACKGROUND An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis t...
متن کاملPleiotropy-robust Mendelian randomization.
Background The potential of Mendelian randomization studies is rapidly expanding due to: (i) the growing power of genome-wide association study (GWAS) meta-analyses to detect genetic variants associated with several exposures; and (ii) the increasing availability of these genetic variants in large-scale surveys. However, without a proper biological understanding of the pleiotropic working of ge...
متن کاملSensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants
Mendelian randomization investigations are becoming more powerful and simpler to perform, due to the increasing size and coverage of genome-wide association studies and the increasing availability of summarized data on genetic associations with risk factors and disease outcomes. However, when using multiple genetic variants from different gene regions in a Mendelian randomization analysis, it i...
متن کامل