Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1.

نویسندگان

  • Boris Kysela
  • Miroslav Chovanec
  • Penny A Jeggo
چکیده

DNA nonhomologous end-joining in vivo requires the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4 (LX) complexes. Here, we have examined the impact of histone octamers and linker histone H1 on DNA end-joining in vitro. Packing of the DNA substrate into dinucleosomes does not significantly inhibit ligation by LX. However, LX ligation activity is substantially reduced by the incorporation of linker histones. This inhibition is independent of the presence of core histone octamers and cannot be restored by addition of Ku alone but can be partially rescued by DNA-PK. The kinase activity of DNA-PK is essential for the recovery of end-joining. DNA-PK efficiently phosphorylates histone H1. Phosphorylated histone H1 has a reduced affinity for DNA and a decreased capacity to inhibit end-joining. Our findings raise the possibility that DNA-PK may act as a linker histone kinase by phosphorylating linker histones in the vicinity of a DNA break and coupling localized histone H1 release from DNA ends, with the recruitment of LX to carry out double-stranded ligation. Thus, by using histone H1-bound DNA as a template, we have reconstituted the end-joining step of DNA nonhomologous end-joining in vitro with a requirement for DNA-PK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of aspirin on the interaction of histone 05 and 05-DNA

The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...

متن کامل

Histone H1 functions as a stimulatory factor in backup pathways of NHEJ

DNA double-strand breaks (DSBs) induced in the genome of higher eukaryotes by ionizing radiation (IR) are predominantly removed by two pathways of non-homologous end-joining (NHEJ) termed D-NHEJ and B-NHEJ. While D-NHEJ depends on the activities of the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4/XLF, B-NHEJ utilizes, at least partly, DNA ligase III/XRCC1 and PARP-1. Using in v...

متن کامل

Effects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP

Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...

متن کامل

Chromatin, Histones, and Epigenetic Tags

POPULÄRVETENSKAPLIG SAMMANFATTNING LIST OF PUBLICATIONS LIST OF ABBREVIATIONS INTRODUCTION 15 Chromatin History and Research 16 Nobel Prizes Related to Chromatin 19 AIMS OF THE STUDY 21 CHROMATIN STRUCTURE 23 DNA 23 Composition of DNA 23 The Nucleosome 26 Location of Linker Histones 27 Higher-Order Chromatin Structure 28 Euchromatin and Heterochromatin 30 THE HISTONES 31 Histone Variants 32 Cor...

متن کامل

Linker histone H1 modulates nucleosome remodeling by human SWI/SNF.

Chromatin, a combination of nucleosomes and linker histones, inhibits transcription by blocking polymerase movement and access of factors to DNA. ATP-dependent remodeling complexes such as SWI/SNF and RSC alter chromatin structure to increase or decrease this repression. To further our understanding of how human SWI/SNF (hSWI/SNF) "remodels" chromatin we examined the octamer location, nature, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 6  شماره 

صفحات  -

تاریخ انتشار 2005