Numerical Methods for the QCD Overlap Operator:I. Sign-Function and Error Bounds

نویسنده

  • J. van den Eshof
چکیده

The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix-vector product that involves the sign function of the hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion methods. Our goal is two-fold: we give realistic comparisons between known methods together with novel approaches and we present error bounds which allow to guarantee a given accuracy when terminating the Lanczos method and the multishift-CG solver, applied within the partial fraction expansion methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Methods for the QCDOverlap Operator : I . Sign - Function and Error

The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix-vector product that involves the sign function of the hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion m...

متن کامل

ar X iv : h ep - l at / 0 11 01 98 v 1 2 5 O ct 2 00 1 A comparative study of numerical methods for the overlap Dirac operator — a status report

Improvements of various methods to compute the sign function of the hermitian Wilson-Dirac matrix within the overlap operator are presented. An optimal partial fraction expansion (PFE) based on a theorem of Zolotarev is given. Benchmarks show that this PFE together with removal of converged systems within a multi-shift CG appears to approximate the sign function times a vector most efficiently....

متن کامل

Determining the Optimal Value Bounds of the Objective Function in Interval Quadratic Programming Problem with Unrestricted Variables in Sign

In the most real-world applications, the parameters of the problem are not well understood. This is caused the problem data to be uncertain and indicated with intervals. Interval mathematical models include interval linear programming and interval nonlinear programming problems.A model of interval nonlinear programming problems for decision making based on uncertainty is interval quadratic prog...

متن کامل

Numerical methods for the QCD overlap operator: III. Nested iterations

The numerical and computational aspects of chiral fermions in lattice quantum chromodynamics are extremely demanding. In the overlap framework, the computation of the fermion propagator leads to a nested iteration where the matrix vector multiplications in each step of an outer iteration have to be accomplished by an inner iteration; the latter approximates the product of the sign function of t...

متن کامل

A note on the Zolotarev optimal rational approximation for the overlap Dirac operator

We discuss the salient features of Zolotarev optimal rational approximation for the inverse square root function, in particular, for its applications in lattice QCD with overlap Dirac quark. The theoretical error bound for the matrix-vector multiplication Hw(H 2 w) −1/2Y is derived. We check that the error bound is always satisfied amply, for any QCD gauge configurations we have tested. An empi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002