Solutions of Two Dimensional Viscous Accretion and Winds In Kerr Black Hole Geometry
نویسنده
چکیده
We extend our previous studies of shock waves and shock-free solutions in thin accretion and winds in pseudo-Newtonian geometry to the case when the flow is two-dimensional and around a Kerr black hole. We present equations for fully general relativistic viscous transonic flows and classify the parameter space according to whether or not shocks form in an inviscid flow. We discuss the behaviors of shear, angular momentum distribution, heating and cooling in viscous flows. We obtain a very significant result: we find that in weak viscosity limit the presence of the standing shock waves is more generic in the sense that flows away from the equatorial plane can produce shock waves in a wider range of parameter space. Similar conclusion also holds when the angular momentum of the black hole is increased. Generally, our conclusions regarding the shape of the shock waves are found to agree with results of the existing numerical simulations of the two dimensional accretion in Schwarzschild geometry. In a strong viscosity limit, the shocks may be located farther out or disappear completely as in the pseudo-Newtonian geometry. Subject headings: Accretion, Accretion Disks Black Hole Physics Hydrodynamics Shock Waves Winds Appearing in Astrophysical Journal On Nov. 1st, 1996 Submitted to the Astrophysical Journal
منابع مشابه
Global Solutions of Viscous Transonic Flows in Kerr Geometry I: Weak Viscosity Limit
We present fully general relativistic equations governing viscous transonic flows in vertical equilibrium in Kerr geometry. We find the complete set of global solutions (both for Optically thick and optically thin flows) in the weak viscosity limit. We show that for a large region of parameter space, centrifugal pressure supported standing shocks can form in accretion and winds very close to th...
متن کاملHorizon-Penetrating Transonic Accretion Disks around Rotating Black Holes
The stationary hydrodynamic equations for the transonic accretion disks and flows around rotating black holes are presented by using the Kerr-Schild coordinate where there is no coordinate singularity at the event horizon. We use two types of the causal viscosity prescription, and the boundary conditions for the transonic accretion flows are given at the sonic point. For one type of the causal ...
متن کاملTesting Cowling’s Antidynamo Theorem near a Rotating Black Hole
The kinematic evolution of axisymmetric magnetic and electric fields is investigated numerically in Kerr geometry for a simplified Keplerian disk near a rotating black hole. In the cases investigated it is found that a magnetic field cannot be sustained against ohmic diffusion. In flat space this result is known as Cowling’s antidynamo theorem. No support is found for the possibility that the g...
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملThree-Dimensional Hydrodynamic Simulations of Accretion Tori in Kerr Spacetimes
This paper presents results of three-dimensional simulations of global hydrodynamic instabilities in black hole tori, extending earlier work by Hawley to Kerr spacetimes. This study probes a three-dimensional parameter space of torus angular momentum, torus size, and black hole angular momentum. We have observed the growth of the Papaloizou-Pringle instability for a range of torus configuration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996