Using Global Interpolation to Evaluate the Biot-Savart Integral for Deformable Elliptical Gaussian Vortex Elements

نویسندگان

  • Rodrigo B. Platte
  • Louis F. Rossi
  • Travis B. Mitchell
چکیده

This paper introduces a new method for approximating the Biot-Savart integral for elliptical Gaussian functions using high-order interpolation and compares it to an existing method based on small aspect ratio asymptotics. The new evaluation technique uses polynomials to approximate the kernel corresponding to the integral representation of the streamfunction. We determine the polynomial coefficients by interpolating precomputed values from look-up tables over a wide range of aspect ratios. When implemented in a full nonlinear vortex method, we find that the new technique is almost three times faster and unlike the asymptotic method, provides uniform accuracy over the full range of aspect ratios. As a proof-of-concept for large scale computations, we use the new technique to calculate inviscid axisymmetrization and filamentation of a two-dimensional elliptical fluid vortex. We compare our results with those from a pseudo-spectral computation and from electron vortex experiments, and find good agreement between the three approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Biot-Savart Integral for Deformable Elliptical Gaussian Vortex Elements

This paper introduces two techniques for approximating the Biot–Savart integral for deforming elliptical Gaussian functions. The primary motivation is to develop a high spatial accuracy vortex method. The first technique is a regular perturbation of the streamfunction in the small parameter = a−1 a+1 , where a2 is the aspect ratio of the basis function. This perturbative technique is suitable f...

متن کامل

Non-local dynamics governing the self-induced motion of a planar vortex filament

While the Hasimoto planar vortex filament is one of few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify th...

متن کامل

A Lagrangian particle/panel method for the barotropic vorticity equations on a rotating sphere

We present a Lagrangian particle/panel method for geophysical fluid flow described by the barotropic vorticity equations on a rotating sphere. The particles carry vorticity and the panels are used in discretizing the Biot-Savart integral for the velocity. Adaptive panel refinement and a new Lagrangian remeshing scheme are applied to reduce the computational cost and maintain accuracy as the flo...

متن کامل

Derivation of the Biot-Savart equation from the nonlinear Schrödinger equation.

We present a systematic derivation of the Biot-Savart equation from the nonlinear Schrödinger equation, in the limit when the curvature radius of vortex lines and the intervortex distance are much greater than the vortex healing length, or core radius. We derive the Biot-Savart equations in Hamiltonian form with Hamiltonian expressed in terms of vortex lines,H=κ(2)/8π∫(|s-s'|>ξ(*))(ds·ds')/|s-s...

متن کامل

Use of Fast Multipole to Accelerate Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams

We report the integration of a FMM (Fast Multipole Method) template library “FMMTL” into the discrete circulation-preserving vortex sheets method to accelerate the Biot-Savart integral. We measure the speed-up on a bubble oscillation test with varying mesh resolution. We also report a few examples with higher complexity than previously achieved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009