An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development
نویسندگان
چکیده
[1] To explain the much higher denudation rates and valley network development on early Mars (> 3.6 Gyr ago), most investigators have invoked either steady state warm/wet (Earthlike) or cold/dry (modern Mars) end-member paleoclimates. Here we discuss evidence that highland gradation was prolonged, but generally slow and possibly ephemeral during the Noachian Period, and that the immature valley networks entrenched during a brief terminal epoch of more erosive fluvial activity in the late Noachian to early Hesperian. Observational support for this interpretation includes (1) late-stage breaching of some enclosed basins that had previously been extensively modified, but only by internal erosion and deposition; (2) deposition of pristine deltas and fans during a late stage of contributing valley entrenchment; (3) a brief, erosive response to base level decline (which was imparted as fretted terrain developed by a suite of processes unrelated to surface runoff) in fluvial valleys that crosscut the highland-lowland boundary scarp; and (4) width/contributing area relationships of interior channels within valley networks, which record significant late-stage runoff production with no evidence of recovery to lower-flow conditions. This erosion appears to have ended abruptly, as depositional landforms generally were not entrenched with declining base level in crater lakes. A possible planetwide synchronicity and common cause to the late-stage fluvial activity are possible but remain uncertain. This increased activity of valley networks is offered as a possible explanation for diverse features of highland drainage basins, which were previously cited to support competing warm, wet and cold, dry paleoclimate scenarios.
منابع مشابه
An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits
[1] We present evidence that a final epoch of widespread fluvial erosion and deposition in the cratered highlands during the latest Noachian or early to mid-Hesperian was characterized by integration of flow within drainage networks as long as 4000 km and trunk valley incision of 50 to 350 m into earlier Noachian depositional basins. Locally deltaic sediments were deposited where incised valley...
متن کاملInterior channels in Martian valley networks: Discharge and runoff production
The highland valley networks are perhaps the most compelling evidence for widespread fluvial activity on Mars .3.5 Ga. However, determining the hydrology of these features has been difficult owing to poor image resolution and the lack of available topographic data. New orbital imaging reveals 21 late-stage channels within valley networks, which we use to estimate formative discharges and to eva...
متن کاملSimulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing
On the highlands of Mars early in the history of the planet precipitation-driven fluvial erosion competed with ongoing impact cratering. This disruption, and the multiple enclosed basins produced by impacts, is partially responsible for a long debate concerning the processes and effectiveness of fluvial erosion. The role of fluvial erosion in sculpting the early Martian landscape is explored he...
متن کاملAssessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars
We present results from geomorphic mapping and visible to near-infrared spectral analyses of the Jezero crater paleolake basin and its associated watershed. The goal of this study is to understand the provenance of the sedimentary deposits within this open-basin lake using a source-to-sink approach. Two fan deposits located within the basin have distinct visible to near-infrared mineralogic sig...
متن کاملGeomorphology of Ma’adim Vallis, Mars, and associated paleolake basins
[1] Ma’adim Vallis, one of the largest valleys in the Martian highlands, appears to have originated by catastrophic overflow of a large paleolake located south of the valley heads. Ma’adim Vallis debouched to Gusev crater, 900 km to the north, the landing site for the Spirit Mars Exploration Rover. Support for the paleolake overflow hypothesis comes from the following characteristics: (1) With ...
متن کامل