Adaptability, interpretability and rule weights in fuzzy rule-based systems

نویسندگان

  • Andri Riid
  • Ennu Rüstern
چکیده

This paper discusses interpretability in two main categories of fuzzy systems fuzzy rule-based classifiers and interpolative fuzzy systems. Our goal is to show that the aspect of high level interpretability is more relevant to fuzzy classifiers, whereas fuzzy systems employed in modeling and control benefit more from low-level interpretability. We also discuss the interpretabilityaccuracy tradeoff and observe why various rule weighting schemes that have been brought into play to increase adaptability of fuzzy systems rather just increase computational overhead and seriously compromise interpretability of fuzzy systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and  interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...

متن کامل

How the Learning of Rule Weights A ects the Interpretability of Fuzzy Systems

Neuro-fuzzy systems have recently gained a lot of interest in research and application. These are approaches that learn fuzzy systems from data. Many of them use rule weights for this task. In this paper we discuss the innuence of rule weights on the interpretability of fuzzy systems. We show how rule weights can be equivalently replaced by modiications in the membership functions of a fuzzy sy...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

A Mechanism to Improve the Interpretability of Linguistic Fuzzy Systems with Adaptive Defuzzification based on the use of a Multi-objective Evolutionary Algorithm

This paper proposes a mechanism that helps improve the interpretability of linguistic fuzzy ruled based systems with common adaptive defuzzification methods. Adaptive defuzzification significantly improves the system accuracy, but introduces weights associated with each rule of the rule base, decreasing the system interpretability. The suggested mechanism is based on three goals: 1) reducing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 257  شماره 

صفحات  -

تاریخ انتشار 2014