A Gaussian Mixture Model Smoother for Continuous Nonlinear Stochastic Dynamical Systems: Applications

نویسندگان

  • TAPOVAN LOLLA
  • PIERRE F. J. LERMUSIAUX
چکیده

The nonlinear Gaussian Mixture Model Dynamically Orthogonal (GMM–DO) smoother for highdimensional stochastic fields is exemplified and contrasted with other smoothers by applications to three dynamical systems, all of which admit far-from-Gaussian distributions. The capabilities of the smoother are first illustrated using a double-well stochastic diffusion experiment. Comparisons with the original and improved versions of the ensemble Kalman smoother explain the detailed mechanics of GMM–DO smoothing and show that its accuracy arises from the joint GMMdistributions across successive observation times. Next, the smoother is validated using the advection of a passive stochastic tracer by a reversible shear flow. This example admits an exact smoothed solution, whose derivation is also provided. Results show that the GMM– DO smoother accurately captures the full smoothed distributions and not just the mean states. The final example showcases the smoother inmore complex nonlinear fluid dynamics caused by a barotropic jet flowing through a sudden expansion and leading to variable jets and eddies. The accuracy of theGMM–DO smoother is compared to that of the Error Subspace Statistical Estimation smoother. It is shown that even when the dynamics result in only slightlymultimodal joint distributions, Gaussian smoothing can lead to a severe loss of information. The three examples show that the backward inferences of the GMM–DO smoother are skillful and efficient. Accurate evaluation of Bayesian smoothers for nonlinear high-dimensional dynamical systems is challenging in itself. The present three examples—stochastic low dimension, reversible high dimension, and irreversible high dimension—provide complementary and effective benchmarks for such evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Assimilation with Gaussian Mixture Models Using the Dynamically Orthogonal Field Equations. Part I: Theory and Scheme

This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent stochastic subspace that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical applications, but that also rigorously utilizes the governing dynamical equations with information theor...

متن کامل

Data Assimilation with Gaussian Mixture Models Using the Dynamically Orthogonal Field Equations. Part II: Applications

The properties and capabilities of the Gaussian Mixture Model–Dynamically Orthogonal filter (GMMDO) are assessed and exemplified by applications to two dynamical systems: 1) the double well diffusion and 2) sudden expansion flows; both of which admit far-from-Gaussian statistics. The former test case, or twin experiment, validates the use of the Expectation-Maximization (EM) algorithm and Bayes...

متن کامل

Gaussian filtering and smoothing for continuous-discrete dynamic systems

This article is concerned with Bayesian optimal filtering and smoothing of non-linear continuous-discrete state space models, where the state dynamics are modeled with non-linear Itô-type stochastic differential equations, and measurements are obtained at discrete time instants from a non-linear measurement model with Gaussian noise. We first show how the recently developed sigma-point approxim...

متن کامل

Sigma Point Transformation for Gaussian Mixture Distributions

This paper describes the development of an approximate method for propagating uncertainty through stochastic dynamical systems using a quadrature rule integration based method. The development of quadrature rules for Gaussian mixture distributions is discussed. A numerical solution to this problem is considered that uses a Gram-Schmidt process. Simulation results are presented where the quadrat...

متن کامل

A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems

We introduce a method for approximate smoothed inference in a class of switching linear dynamical systems, based on a novel form of Gaussian Sum smoother. This class includes the switching Kalman Filter and the more general case of switch transitions dependent on the continuous latent state. The method improves on the standard Kim smoothing approach by dispensing with one of the key approximati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017