Efficiently Solving Repeated Integer Linear Programming Problems by Learning Solutions of Similar Linear Programming Problems using Boosting Trees
نویسندگان
چکیده
It is challenging to obtain online solutions of large-scale integer linear programming (ILP) problems that occur frequently in slightly different forms during planning for autonomous systems. We refer to such ILP problems as repeated ILP problems. The branch-and-bound (BAB) algorithm is commonly used to solve ILP problems, and a significant amount of computation time is expended in solving numerous relaxed linear programming (LP) problems at the nodes of the BAB trees. We observe that the relaxed LP problems, both within a particular BAB tree and across multiple trees for repeated ILP problems, are similar to each other in the sense that they contain almost the same number of constraints, similar objective function and constraint coefficients, and an identical number of decision variables. We present a boosting tree-based regression technique for learning a set of functions that map the objective function and the constraints to the decision variables of such a system of similar LP problems; this enables us to efficiently infer approximately optimal solutions of the repeated ILP problems. We provide theoretical performance guarantees on the predicted values and demonstrate the effectiveness of the algorithm in four representative domains involving a library of benchmark ILP problems, aircraft carrier deck scheduling, vehicle routing, and vehicle control.
منابع مشابه
An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملLearning Solutions of Similar Linear Programming Problems using Boosting Trees
In many optimization problems, similar linear programming (LP) problems occur in the nodes of the branch and bound trees that are used to solve integer (mixed or pure, deterministic or stochastic) programming problems. Similar LP problems are also found in problem domains where the objective function and constraint coefficients vary due to uncertainties in the operating conditions. In this repo...
متن کاملA Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers
The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کاملA new approach for solving neutrosophic integer programming problems
Linear programming is one of the most important usages of operation research methods in real life, that includes of one objective function and one or several constraints which can be in the form of equality and inequality. Most of the problems in the real world are include of inconsistent and astute uncertainty, because of this reason we can’t obtain the optimal solution easily. In this paper, ...
متن کامل