Adsorption of microstructured particles at liquid-liquid interfaces.

نویسندگان

  • Yoshimune Nonomura
  • Shigeyuki Komura
  • Kaoru Tsujii
چکیده

The solid particles are adsorbed at interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described by taking into account the surface roughness due to the microstructure. The microstructure on the surface changes drastically the wettability and the equilibrium position of the adsorbed particle. Therefore, the contact angle of the particle at the three-phase contact line shifts with the particle surface area, because the surface roughness enhances the interfacial properties of the particle surface. Moreover, the range of the interfacial tensions at which the particle is adsorbed becomes narrower with the increase of the surface roughness. The effect of the particle shape on the adsorption properties is also studied. In the case of disk-shaped particles, the energy changes discontinuously when the plane surface of the particle contacts the liquid-liquid interface. The adsorbing position does not change with the surface roughness. The orientation of a parallelepiped particle at the liquid-liquid interface is governed by the aspect ratio and the surface area of the particle. On the other hand, the particle which is partially covered with the microstructured surface is adsorbed firmly at the interface in an oriented state. We should consider not only the interfacial tensions but also the surface structure and the particle shape to control the adsorption behavior of the particle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of Nonspherical Particles at Solid/Liquid Interfaces

Localized adsorption of nonspherical particles at solid/liquid interfaces was analyzed theoretically. Aproximate models for calculating interactions between particles and interfaces as well as between particles were discussed. It was demonstrated that for convex particles the Derjaguin model can be used for small separations, whereas for larger separations the equivalent sphere approach proved ...

متن کامل

Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughne...

متن کامل

Permeability of silk microcapsules made by the interfacial adsorption of protein.

The assembly of colloidal particles at a liquid/liquid interface is a useful technique for the formation of a large variety of structures. Recently, we created a new method which uses liquid/liquid interfaces to assemble recombinant silk proteins into thin-shelled microcapsules. These microcapsules are mechanically stable and well suited to applications such as enzyme therapy and artificial cel...

متن کامل

Adsorption of Janus particles to curved interfaces.

We investigate the adsorption of a spherical Janus particle to a spherically curved liquid-liquid interface. We show that the equilibrium contact angle is determined by the geometry of the particle, its wettability, and also the interfacial curvature. In contrast with a homogeneous particle, there is a preferred interfacial curvature (spontaneous curvature) due to the Janus particle when the pa...

متن کامل

A multiscale approach to the adsorption of core-shell nanoparticles at fluid interfaces.

Self-assembly of colloidal particles at liquid-liquid interfaces is a process with great potential for the creation of controlled structures, due to the trapping of the particles in the plane of the interface combined with their lateral mobility. Here we present a multiscale characterisation of the adsorption and interfacial behaviour of core-shell iron oxide-poly(ethylene glycol) nanoparticles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 26  شماره 

صفحات  -

تاریخ انتشار 2006