Lagrange Inversion via Transforms

نویسنده

  • Heinrich Niederhausen
چکیده

In [3] we described a technique for solving certain linear operator equations by studying the operator power series de…ned by the system. Essential for obtaining explicit solutions is a Lagrange inversion formula for power series with coe¢ cients in an integral domain K. Such a formula can be found in “Recursive Matrices and Umbral Calculus”by Barnabei, Brini and Nicoletti [1]. J. F. Freeman’s [2] development of a theory of transforms of linear operators on generating functions provides us with a new interpretation of what inversion could mean in general (Theorem 1). We show how special choices of operators and generating functions then produce the desired formula. Lagrange inversion requires imbedding of power series into Laurent series. Therefore, we have to investigate transforms in a slightly more general situation than it was done in [2]. The generalization carefully preserves all the important properties of transforms. These properties are listed in Section 4, omitting most of the straightforward proofs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of Bilinear Transform Polynomial Methods of Inversion of Laplace Transforms

Methods for the numerical inversion of a Laplace transform F(s) which use a special bilinear transformation of s are particularly eeective in many cases and are widely used. The main purpose of this paper is to analyze the convergence and conditioning properties of a special class of such methods, characterized by the use of Lagrange interpolation. The results derived apply both to complex and ...

متن کامل

L2-transforms for boundary value problems

In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

Laplace Transforms for Numericalinversion via Continued

It is often possible to e ectively calculate cumulative distribution functions and other quantities of interest by numerically inverting Laplace transforms. However, to do so it is necessary to compute the Laplace transform values. Unfortunately, convenient explicit expressions for required transforms are often unavailable. In that event, we show that it is sometimes possible to nd continued-fr...

متن کامل

Lagrange Inversion and Schur Functions

Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of the generating function of the complete homogeneous symmetric functions. The main result we prove in this note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative symmetric functions. The proof relies on the combinatorics of Lagrange inversion. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008