A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue.

نویسندگان

  • M Menzel
  • K Michielsen
  • H De Raedt
  • J Reckfort
  • K Amunts
  • M Axer
چکیده

The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.

A Monte Carlo model for polarized light propagation in birefringent, optically active, multiply scattering media is developed in an effort to accurately represent the propagation of polarized light in biological tissue. The model employs the Jones N-matrix formalism to combine both linear birefringence and optical activity into a single effect that can be applied to photons as they propagate be...

متن کامل

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

A generalised Measurement Equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

We derive a generalised van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field-of-view (FoV). The classical vCZ theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalised vC-Z theorems in radio astronomy assume, however, ...

متن کامل

Mueller matrix decomposition for polarized light assessment of biological tissues.

The Mueller matrix represents the transfer function of an optical system in its interactions with polarized light and its elements relate to specific biologically or clinically relevant properties. However, when many optical polarization effects occur simultaneously, the resulting matrix elements represent several "lumped" effects, thus hindering their unique interpretation. Currently, no metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 12 111  شماره 

صفحات  -

تاریخ انتشار 2015