A Particle Swarm Optimization Based on Evolutionary Game Theory for Discrete Combinatorial Optimization
نویسندگان
چکیده
This paper presented a new particle swarm optimization based on evolutionary game theory (EPSO) for the traveling salesman problem (TSP) to overcome the disadvantages of premature convergence and stagnation phenomenon of traditional particle swarm optimization algorithm (PSO). In addition ,we make a mapping among the three parts discrete particle swarm optimization (DPSO)、 evolutionary game theory and traveling salesman problem by using replicator dynamics to restrict the behavior of particles.. Finally, we give experimental examples in the standard library LIBTSP and the performance analyses of the algorithm. Comparing with the genetic algorithm and basic particle swarm optimization algorithm we show that the EPSO algorithm is effective.
منابع مشابه
A Novel Particle Swarm Optimization Algorithm for Multi-Objective Combinatorial Optimization Problem
The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-...
متن کاملDiscrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)
Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل