Monotone solutions of dynamic systems on time scales

نویسنده

  • Bernd Aulbach
چکیده

and rðtÞ :1⁄4 sup{t , t : t [ T}; for all t [ T, where inf Y: 1⁄4 sup T and sup Y: 1⁄4 inf T, where Y denotes the empty set. We assume throughout that T has the topology that it inherits from the standard topology on the real numbers R. If s(t) . t, we say t is right-scattered, while if r(t) , t we say t is leftscattered. If s(t) 1⁄4 t and t , sup T we say t is right-dense, while if r(t) 1⁄4 t and t . inf T we say t is left-dense. The function x:T ! R is said to be right-dense continuous (rd-continuous) and we write x [ Crd provided x is continuous at each right-dense point in T and at each left-dense point in T left-hand limits exist (finite). The function x:T ! R is said to be regressive provided the regressivity condition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

Monotone Solutions of Dynamic Systems on Time Scales

We are concerned with proving that solutions of certain dynamical systems on time scales satisfy some monotoneity conditions. These results then give important results for nth order linear scalar equations. We then give a related result for a third order nonlinear (Emden–Fowler type) dynamic equation.

متن کامل

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

Monotone Iterative Technique for First-Order Nonlinear Periodic Boundary Value Problems on Time Scales

Recently, periodic boundary value problems PBVPs for short for dynamic equations on time scales have been studied by several authors by using the method of lower and upper solutions, fixed point theorems, and the theory of fixed point index. We refer the reader to 1–10 for some recent results. In this paper we are interested in the existence of positive solutions for the following first-order P...

متن کامل

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006