Color Algebras

نویسنده

  • Jeffrey B. Mulligan
چکیده

A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixure of colors, but is critical for ”subtractive” (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Algebras and the Four Color Theorem

We present a statement about Lie algebras that is equivalent to the Four Color Theorem.

متن کامل

ar X iv : q - a lg / 9 60 60 16 v 1 2 3 Ju n 19 96 LIE ALGEBRAS AND THE FOUR COLOR THEOREM DROR

We present a “reasonable” statement about Lie algebras that is equivalent to the Four Color Theorem.

متن کامل

v 1 2 3 Ju n 19 96 LIE ALGEBRAS AND THE FOUR COLOR THEOREM DROR BAR - NATAN

We present a “reasonable” statement about Lie algebras that is equivalent to the Four Color Theorem.

متن کامل

Cohomology of 3-dimensional Color Lie Algebras

We develop the cohomology theory of color Lie superalgebras due to Scheunert–Zhang in a framework of nonhomogeneous quadratic Koszul algebras. In this approach, the Chevalley– Eilenberg complex of a color Lie algebra becomes a standard Koszul complex for its universal enveloping algebra. As an application, we calculate cohomologies with trivial coefficients of Zn 2 – graded 3–dimensional color ...

متن کامل

A Poincaré-birkhoff-witt Theorem for Generalized Lie Color Algebras

A proof of Poincaré-Birkhoff-Witt theorem is given for a class of generalized Lie algebras closely related to the Gurevich S-Lie algebras. As concrete examples, we construct the positive (negative) parts of the quantized universal enveloping algebras of type An and Mp,q,ǫ(n, K), which is a nonstandard quantum deformation of GL(n). In particular, we get, for both algebras, a unified proof of the...

متن کامل

On the Lie’s Theorem for Lie Color Algebras

We show that the Lie’s Theorem holds for Lie color algebras with a torsion-free abelian group G. We give an example to show that the torsion-free condition is necessary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017