Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm - FSI modelling.

نویسندگان

  • Danny Bluestein
  • Kris Dumont
  • Matthieu De Beule
  • John Ricotta
  • Paul Impellizzeri
  • Benedict Verhegghe
  • Pascal Verdonck
چکیده

Recent numerical studies of abdominal aortic aneurysm (AAA) suggest that intraluminal thrombus (ILT) may reduce the stress loading on the aneurysmal wall. Detailed fluid structure interaction (FSI) in the presence and absence of ILT may help predict AAA rupture risk better. Two patients, with varied AAA geometries and ILT structures, were studied and compared in detail. The patient specific 3D geometries were reconstructed from CT scans, and uncoupled FSI approach was applied. Complex flow trajectories within the AAA lumen indicated a viable mechanism for the formation and growth of the ILT. The resulting magnitude and location of the peak wall stresses was dependent on the shape of the AAA, and the ILT appeared to reduce wall stresses for both patients. Accordingly, the inclusion of ILT in stress analysis of AAA is of importance and would likely increase the accuracy of predicting AAA risk of rupture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image-based Computational Fluid Dynamics and Structural Analysis in Abdominal Aortic Aneurysms

Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI)...

متن کامل

Stress Analysis in Abdominal Aortic Aneurysms Applying Flow Induced Wall Pressure

Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI)...

متن کامل

Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.

Abdominal aortic aneurysm (AAA) rupture represents a major cardiovascular risk, combining complex vascular mechanisms weakening the abdominal artery wall coupled with hemodynamic forces exerted on the arterial wall. At present, a reliable method to predict AAA rupture is not available. Recent studies have introduced fluid structure interaction (FSI) simulations using isotropic wall properties t...

متن کامل

A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms.

Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient-specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI)...

متن کامل

A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms.

Abdominal aortic aneurysm (AAA) is often accompanied by in traluminal thrombus (ILT), which complicates AAA progression and risk of rupture. Patient-specific computational fluid dynamics modeling of 10 small human AAA was performed to investigate relations between hemodynamics and ILT progression. The patients were imaged using magnetic resonance twice in a 2- to 3-yr interval. Wall content dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods in biomechanics and biomedical engineering

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2009