Semi-Supervised Learning with Adaptive Spectral Transform
نویسندگان
چکیده
This paper proposes a novel nonparametric framework for semi-supervised learning and for optimizing the Laplacian spectrum of the data manifold simultaneously. Our formulation leads to a convex optimization problem that can be efficiently solved via the bundle method, and can be interpreted as to asymptotically minimize the generalization error bound of semi-supervised learning with respect to the graph spectrum. Experiments over benchmark datasets in various domains show advantageous performance of the proposed method over strong baselines.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSmooth Harmonic Transductive Learning
In this paper, we present a novel semi-supervised smooth harmonic transductive learning algorithm that can get closed-form solution. Our method introduces the unlabeled class information to the learning process and tries to exploit the similar configurations shared by the label distribution of data. After discovering the property of smooth harmonic function based on spectral clustering in class...
متن کاملMulti-Manifold Semi-Supervised Learning
We study semi-supervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multi-manifold setting. We then propose a semi-supervised learning algorithm that separates different manifolds into decision sets, and performs supervised learning within each set. Our algorithm involves a n...
متن کاملThe Hong Kong Baptist University Adapting Kernel-based Methods to Semi-supervised Learning: from Multi-class Svm to Spectral Analysis a Research Prospectus Submitted to the Thesis Committee for Pursuing the Degree of Master of Philosophy Department of Computer Science by Wu Zhili
This prospectus proposes a preliminary research topic about fusing the kernel-based SVM method and the similarity-based spectral clustering into a semi-supervised learning algorithm under the scope of learning from both labeled and unlabeled data. For the past nine months before the prospectus comes out, much effort has been put to extend the bloomed SVM to more practicable multi-class learning...
متن کاملAnalysis of Spectral Kernel Design based Semi-supervised Learning
We consider a framework for semi-supervised learning using spectral decomposition based un-supervised kernel design. This approach subsumes a class of previously proposed semi-supervised learning methods on data graphs. We examine various theoretical properties of such methods. In particular, we derive a generalization performance bound, and obtain the optimal kernel design by minimizing the bo...
متن کامل