Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron–Sulfur Cluster Biosynthesis

نویسندگان

  • Kai Cai
  • Marco Tonelli
  • Ronnie O Frederick
  • John L Markley
چکیده

Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis.

Mammalian adrenodoxin (ferredoxin 1; Fdx1) is essential for the synthesis of various steroid hormones in adrenal glands. As a member of the [2Fe-2S] cluster-containing ferredoxin family, Fdx1 reduces mitochondrial cytochrome P450 enzymes, which then catalyze; e.g., the conversion of cholesterol to pregnenolone, aldosterone, and cortisol. The high protein sequence similarity between Fdx1 and its...

متن کامل

Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.

Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in disti...

متن کامل

Assembly mechanism of [Fe2S2] cluster in ferredoxin from Acidithiobacillus ferrooxidans.

Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correct...

متن کامل

ISCU(M108I) and ISCU(D39V) Differ from Wild-Type ISCU in Their Failure To Form Cysteine Desulfurase Complexes Containing Both Frataxin and Ferredoxin

Whereas iron-sulfur (Fe-S) cluster assembly on the wild-type scaffold protein ISCU, as catalyzed by the human cysteine desulfurase complex (NIA)2, exhibits a requirement for frataxin (FXN), in yeast, ISCU variant M108I has been shown to bypass the FXN requirement. Wild-type ISCU populates two interconverting conformational states: one structured and one dynamically disordered. We show here that...

متن کامل

[2Fe-2S]-Ferredoxin Binds Directly to Cysteine Desulfurase and Supplies an Electron for Iron–Sulfur Cluster Assembly but Is Displaced by the Scaffold Protein or Bacterial Frataxin

Escherichia coli [2Fe-2S]-ferredoxin (Fdx) is encoded by the isc operon along with other proteins involved in the 'house-keeping' mechanism of iron-sulfur cluster biogenesis. Although it has been proposed that Fdx supplies electrons to reduce sulfane sulfur (S(0)) produced by the cysteine desulfurase (IscS) to sulfide (S(2-)) as required for the assembly of Fe-S clusters on the scaffold protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017