Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity.

نویسندگان

  • Meric Erikci Ertunc
  • Jørgen Sikkeland
  • Federico Fenaroli
  • Gareth Griffiths
  • Mathew P Daniels
  • Haiming Cao
  • Fahri Saatcioglu
  • Gökhan S Hotamisligil
چکیده

Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes

The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBP...

متن کامل

Altered insulin secretion associated with reduced lipolytic efficiency in aP2-/- mice.

Recent studies have shown that genetic deficiency of the adipocyte fatty acid-binding protein (aP2) results in minor alterations of plasma lipids and adipocyte development but provides significant protection from dietary obesity-induced hyperinsulinemia and insulin resistance. To identify potential mechanisms responsible for this phenotype, we examined lipolysis and insulin secretion in aP2-/- ...

متن کامل

Heat stress enhances adipogenic differentiation of subcutaneous fat depot-derived porcine stromovascular cells.

Heat stress (HS) results from excessive heat load on animals such that all adaptive mechanisms used to dissipate the heat do not return the body to normal body temperature. In pigs, HS results in increased fat deposition compared with pair-fed animals in a thermoneutral environment. Although there is evidence that HS increases activity of lipoprotein lipase (LPL) in adipose tissue of heat stres...

متن کامل

Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway.

In order to identify whether bisphenol A (BPA) acts as an adipogenic agent, following the hormonal induction of differentiation into adipocytes, 3T3-L1 cells were treated for six days with BPA alone. Treatment with BPA increased the triacylglycerol (TG) content of the cultures, increased the percentage of Oil Red O-staining cells in the cultures, and increased the levels of lipoprotein lipase (...

متن کامل

Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver.

Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that regulate cholesterol and fatty acid homeostasis. In mammals, three SREBP isoforms designated SREBP-1a, SREBP-1c, and SREBP-2 have been identified. SREBP-1a and SREBP-1c are derived from the same gene by virtue of alternatively spliced first exons. SREBP-1a has a longer transcriptional a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 2015