Distortion Detection on Online Social Networks using Proficient Sentiment Analysis for Banking Institutions
نویسندگان
چکیده
Social media data has been extensively employed in the banking institutions in order to improve the product and service development, customer service, marketing, risk management and business performance. The online social networks such as Facebook, Twitter, etc are considered for analysis. To build the social media strategies, bank needs customer to drive trustworthiness, revenue and success is all about the customer experience. The approach employed Natural Language Processing (NLP) for social media intelligence retrieval. Then based on the concept of sentiment analysis, the customer opinions are categorized for efficient decision making. Thus the NLP & sentiment analysis can be employed for improving banking service for better customer satisfaction.
منابع مشابه
Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks
The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a no...
متن کاملSentiment Analysis of Social Networking Data Using Categorized Dictionary
Sentiment analysis is the process of analyzing a person’s perception or belief about a particular subject matter. However, finding correct opinion or interest from multi-facet sentiment data is a tedious task. In this paper, a method to improve the sentiment accuracy by utilizing the concept of categorized dictionary for sentiment classification and analysis is proposed. A categorized dictiona...
متن کاملAssessment of the Factors Affecting the Acceptance of Online Banking by Consumers with an Emphasis on the Aspect of Risk (Case Study: Customers of Refah Bank in Qazvin Province of Iran)
Nowadays, internet technology provides an opportunity for banks and financial institutions to take advantages in dynamic and competitive turbulent environment in their favor. In addition, considering the importance and status of internet banking and growing trend of it in the country in recent years, now banks and financial institutions have found that maintaining status and effective developme...
متن کاملA Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کامل