Regulatory control of the amidotransferase domain of carbamoyl phosphate synthetase.

نویسندگان

  • B W Miles
  • J A Banzon
  • F M Raushel
چکیده

Carbamoyl phosphate synthetase catalyzes the hydrolysis of glutamine by the nucleophilic attack of an active site cysteine residue through a mechanism that requires the formation of a gamma-glutamyl thioester intermediate. The steady-state mole fraction of the thioester intermediate was determined to be 0.23 in the presence and absence of ATP and bicarbonate. The kinetics of formation and hydrolysis of the gamma-glutamyl thioester intermediate during CPS catalyzed hydrolysis of glutamine were determined. When ATP and bicarbonate are added to CPS and glutamine, the kcat for glutamine hydrolysis increases from 0.17 to 150 min-1. The observed rate constant for thioester intermediate formation increases from 18 to 580 min-1, and the microscopic rate constant for hydrolysis of the intermediate increases from 0.15 to 460 min-1. These results demonstrate the kinetic competence of the thioester intermediate during glutamine hydrolysis. The rate-determining step changes from the hydrolysis of the intermediate when ATP and bicarbonate are absent to the formation of the intermediate upon the addition of ATP and bicarbonate. The 3 order of magnitude increase in the rate of glutamine hydrolysis upon the addition of ATP and bicarbonate is indicative of the allosteric communication between two of the three reaction centers of CPS. These sites are physically separated by approximately 45 A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the amidotransferase activity of carbamoyl phosphate synthetase by the antibiotic acivicin.

Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicar...

متن کامل

Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic...

متن کامل

Role of the hinge loop linking the N- and C-terminal domains of the amidotransferase subunit of carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit and a small amidotransferase subunit. The small subunit is structurally bilobal. The N-terminal domain is unique compared to the sequences of other known proteins. The C-terminal domain, which...

متن کامل

Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase (CPS) catalyzes the formation of carbamoyl phosphate from glutamine, bicarbonate, and 2 mol of MgATP. The heterodimeric protein is composed of a small amidotransferase subunit and a larger synthetase subunit. The synthetase subunit contains a large tandem repeat for each of the nucleotides used in the overall synthesis of carbamoyl phosphate. A working model for t...

متن کامل

Restricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase.

The x-ray crystal structure of the heterodimeric carbamoyl phosphate synthetase from Escherichia coli has identified an intermolecular tunnel that connects the glutamine binding site within the small amidotransferase subunit to the two phosphorylation sites within the large synthetase subunit. The tunneling of the ammonia intermediate through the interior of the protein has been proposed as a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 47  شماره 

صفحات  -

تاریخ انتشار 1998