A Robust Fuzzy Clustering Technique with Spatial Neighborhood Information for Effective Medical Image Segmentation

نویسندگان

  • S. Zulaikha Beevi
  • M. Mohammed Sathik
  • K. Senthamaraikannan
چکیده

Medical image segmentation demands an efficient and robust segmentation algorithm against noise. The conventional fuzzy c-means algorithm is an efficient clustering algorithm that is used in medical image segmentation. But FCM is highly vulnerable to noise since it uses only intensity values for clustering the images. This paper aims to develop a novel and efficient fuzzy spatial c-means clustering algorithm which is robust to noise. The proposed clustering algorithm uses fuzzy spatial information to calculate membership value. The input image is clustered using proposed ISFCM algorithm. A comparative study has been made between the conventional FCM and proposed ISFCM. The proposed approach is found to be outperforming the conventional FCM. Index Terms clustering, fuzzy c-means, image segmentation, membership function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MRI Brain Images Segmentation

In this paper, a modified fuzzy c-means (FCM) clustering for medical image segmentation is presented. A conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership function in the neighborh...

متن کامل

Dynamic Image Segmentation using Fuzzy C-Means based Genetic Algorithm

This paper describes an evolutionary approach for unsupervised gray-scale image segmentation that segments an image into its constituent parts automatically. The aim of this algorithm is to produce precise segmentation of images using intensity information along with neighborhood relationships. In this paper, fuzzy c-means clustering helps in generating the population of Genetic algorithm which...

متن کامل

Image segmentation based on fuzzy clustering with neighborhood information

In this paper, an improved fuzzy c-means (IFCM) clustering algorithm for image segmentation is presented. The originality of this algorithm is based on the fact that the conventional FCM-based algorithm considers no spatial context information, which makes it sensitive to noise. The new algorithm is formulated by incorporating the spatial neighborhood information into the original FCM algorithm...

متن کامل

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation

This paper presents a novel fuzzy energy minimization method for simultaneous segmentation and bias field estimation of medical images. We first define an objective function based on a localized fuzzy c-means (FCM) clustering for the image intensities in a neighborhood around each point. Then, this objective function is integrated with respect to the neighborhood center over the entire image do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1004.1679  شماره 

صفحات  -

تاریخ انتشار 2010