Degenerate Neckpinches in Ricci Flow

نویسندگان

  • SIGURD B. ANGENENT
  • DAN KNOPF
چکیده

In earlier work [2], we derived formal matched asymptotic profiles for families of Ricci flow solutions developing Type-II degenerate neckpinches. In the present work, we prove that there do exist Ricci flow solutions that develop singularities modeled on each such profile. In particular, we show that for each positive integer k ≥ 3, there exist compact solutions in all dimensions m ≥ 3 that become singular at the rate (T − t)−2+2/k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formal matched asymptotics for degenerate Ricci flow neckpinches

Gu and Zhu [16] have shown that Type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on Sn+1 (n ≥ 2). In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit.

متن کامل

Minimally Invasive Surgery for Ricci Flow Singularities

In this paper, we construct smooth forward Ricci flow evolutions of singular initial metrics resulting from rotationally symmetric neckpinches on Sn+1, without performing an intervening surgery. In the restrictive context of rotational symmetry, this construction gives evidence in favor of Perelman’s hope for a “canonically defined Ricci flow through singularities”.

متن کامل

Ricci Flow Neckpinches without Rotational Symmetry

We study “warped Berger” solutions ( S1×S3, G(t) ) of Ricci flow: generalized warped products with the metric induced on each fiber {s}×SU(2) a left-invariant Berger metric. We prove that this structure is preserved by the flow, that these solutions develop finite-time neckpinch singularities, and that they asymptotically approach round product metrics in space-time neighborhoods of their singu...

متن کامل

A Remark on Degenerate Singularity in Three Dimensional Ricci Flow

We show that a rescale limit at any degenerate singularity of Ricci flow in dimension 3 is a steady gradient soliton. In particular, we give a geometric description of type I and type II singularities.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013