A study of parameter values for a Mahalanobis Distance fuzzy classifier
نویسندگان
چکیده
The fuzzy c-means clustering algorithm (and a supervised classiier based on it) requires the a priori selection of a weighting parameter called the fuzzy exponent (denoted m). Guidance in the existing literature on an appropriate value of m is not deenitive. This paper determines suitable values of m by using the criterion that fuzzy set memberships reeect class proportions in the mixed pixels of a remotely sensed image.
منابع مشابه
Values for the Fuzzy -means Classifier in Change Detection for Remote Sensing
We discuss an approach to change detection in digital remotely sensed imagery that relies on the Fuzzy Post Classification Comparison technique. We use the fuzzy -means classifier together with the Mahalanobis distance as the basis for a metric of class membership for a individual pixel. We note that the value of the fuzzy exponent in a fuzzy classifier is based on the ratios of the reciprocals...
متن کاملAn investigation on scaling parameter and distance metrics in semi-supervised Fuzzy c-means
The scaling parameter α helps maintain a balance between supervised and unsupervised learning in semi-supervised Fuzzy c-Means (ssFCM). In this study, we investigated the effects of different α values, 0.1, 0.5, 1 and 10 in Pedrycz and Waletsky’s ssFCM with various amounts of labelled data, 10%, 20%, 30%, 40%, 50% and 60% and three distance metrics, Euclidean, Mahalanobis and kernel-based on th...
متن کاملA study of supervised classification accuracy in fuzzy topological methods
The multiple classifier system (MCS) is an effective automatic classification method, useful in connection with remote sensing analysis techniques. Combining MSC with induced fuzzy topology enables a decomposition of image classes. This fuzzy topological MCS then provides a new and improved approach to classification. The basic classification methods discussed in this paper include maximum like...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 137 شماره
صفحات -
تاریخ انتشار 2003