Propofol restores the function of "hyperekplexic" mutant glycine receptors in Xenopus oocytes and mice.
نویسندگان
چکیده
Human hereditary hyperekplexia ("startle disease") is a neurological disorder characterized by exaggerated, convulsive movements in response to unexpected stimuli. Molecular genetic studies have shown that this disease is often caused by amino acid substitutions at arginine 271 to glutamine or leucine of the alpha1 subunit of the inhibitory glycine receptor (GlyR). When exogenously expressed in Xenopus oocytes, agonist responses of mutant alpha1(R271Q) and alpha1(R271L) GlyRs show higher EC50 values and lower maximal inducible responses (relative efficacies) compared with oocytes expressing wild-type alpha1 GlyR subunits. Here, we report that the maximal glycine-induced currents (I(max)) of mutant alpha1(R271Q) and alpha1(R271L) GlyRs were dramatically potentiated in the presence of the anesthetic propofol (PRO), whereas the I(max) of wild-type alpha(1) receptors was not affected. Quantitative analysis of the agonist responses of the isofunctionally substituted alpha1(R271K) mutant GlyR revealed that saturating concentrations of PRO decreased the EC50 values of both glycine and the partial agonist beta-alanine by >10-fold, with relative efficacies increasing by 4- and 16-fold, respectively. Transgenic (tg) mice carrying the alpha1(R271Q) mutation (tg271Q-300) have both spontaneous and induced tremor episodes that closely resemble the movements of startled hyperekplexic patients. After treatment with subanesthetic doses of PRO, the tg271Q-300 mutant mice showed temporary reflexive and locomotor improvements that made them indistinguishable from wild-type mice. Together, these results demonstrate that the functional and behavioral effects of hyperekplexia mutations can be effectively reversed by drugs that potentiate GlyR responses.
منابع مشابه
The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملEffects of Combination of Intravenous Anesthetic Agents on Human Glycine Receptor evaluated by Artificial Neural Networks
Introduction: Intravenous general anesthetic agents are among the most important and widely used anesthetic drugs in the clinical practice. Many pharmacological studies have shown that potentiation of GABA and glycine on their receptors is the most plausible mechanism. Nevertheless, there is limited information on the effects of co-administration of two or more of these agents. However, expe...
متن کاملProperties of human glycine receptors containing the hyperekplexia mutation alpha1(K276E), expressed in Xenopus oocytes.
1. Inherited defects in human glycine receptors give rise to hyperekplexia (startle disease). We expressed human glycine receptors in Xenopus oocytes, in order to examine the pharmacological and single-channel properties of receptors that contain a mutation, alpha1(K276E), associated with an atypical form of hyperekplexia. 2. Equilibrium concentration-response curves showed that recombinant hum...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملExpression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes.
The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2004