Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival

نویسندگان

  • Katty V. Y. Goossens
  • Francesco S. Ielasi
  • Intawat Nookaew
  • Ingeborg Stals
  • Livan Alonso-Sarduy
  • Luk Daenen
  • Sebastiaan E. Van Mulders
  • Catherine Stassen
  • Rudy G. E. van Eijsden
  • Verena Siewers
  • Freddy R. Delvaux
  • Sandor Kasas
  • Jens Nielsen
  • Bart Devreese
  • Ronnie G. Willaert
چکیده

UNLABELLED We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca(2+) takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca(2+). These results unify the generally accepted lectin hypothesis with the historically first-proposed "Ca(2+)-bridge" hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. IMPORTANCE Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of estuarine natural flocculation process in removal of Cu, Mn, Ni, Pb and Zn

The flocculation of dissolved heavy metals is a process which has an important effect on decreasing the concentration of the colloidal elements during estuarine mixing of river water and sea or ocean water. During this important process, a large amount of colloidal elements change into particles in the form of flock and the dissolved loads decline. This study is performed to evaluate the mechani...

متن کامل

Molecular identification of uncommon clinical yeast species in Iran

Background and Purpose: By using advanced detection/identification methods, the list of emerging uncommon opportunistic yeast infections is rapidly expanding worldwide. Our aim in the present study was sequence-based species delineation of previously unidentified yeasts obtained from a clinically yeast collection. Materials and Methods: A total of twenty three out of the 855 (5.7%) yeast isolat...

متن کامل

Study of trace metals during estuarine mixing of Jarahi River water with the Musa Estuary water

Flocculation of metals is one of the most important estuarine processes that occur due to the mixing of seawater and river water and colloidal metals undergo this process come in the form of flocculants. Due to the important role of flocculation process in producing suitable food sources for aquatic organisms and reducing the amount of input pollution into aquatic environments, the present stud...

متن کامل

FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast

The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, r...

متن کامل

CLONING AND EXPRESSION OF HUMAN IFNα2B GENE IN SACCHAROMYCES CEREVISIAE

Interferon is a protein secreted by eucaryotic cells following stimulation by viruses, bacteria, and many other immunogenes. Recent medical studies indicate that interferons have effective role in the treatment of virus infections, immunodeficiency and certain types of cancer such as hairy cell leukaemia (HCL). The aim of the present study is to apply yeast strain for secreting human IFNα2b fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015