Municipal Solid Waste Landfills Harbor Distinct Microbiomes
نویسندگان
چکیده
Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.
منابع مشابه
Methane emission from passively degased landfills and landfills with mechanically- biologically pre-treated municipal solid waste
متن کامل
A bi-objective model for the capacity and location of landfills for municipal solid wastes
This paper considers a bi-objective mathematical model for locations of landfills, transfer stations and material recovery facilities (MRFs) in order to serve the entire regions and simultaneously identify the capacities of landfills. This is a mixed-integer programming (MIP) model, whose objectives are to minimize the total cost and pollution simultaneously. To validate the model, a numerical ...
متن کاملAluminum Reactions and Problems in Municipal Solid Waste Landfills
Aluminum enters municipal solid waste MSW landfills from untreated raw curbside trash MSW , industrial waste, and aluminum production wastes variously called dross, baghouse fines, salt cake, and other designations. Aluminum related reactions can arise and become problematic for landfill operations by generating undesirable heat, liquid leachate, and gases, such as hydrogen, hydrogen sulfide, c...
متن کاملMethane Production from Municipal Solid Waste
Introduction Archaeological investigations of landfills have revealed that biodegradable wastes can be found — virtually intact — 25 years after burial. We know that landfills contain bacteria with the metabolic capability to degrade many of the materials that are common components of municipal refuse. The persistence for decades of degradable materials in the presence of such organisms appears...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016