Thermodynamics of Carbonic Anhydrase Catalysis
نویسندگان
چکیده
The COZ hydration and HC03dehydration activities of human red cell carbonic anhydrase isozymes B and C (HCAB and HCAC) have been studied as a function of temperature from 0” to 37°C. The Arrhenius plots of In kcat versus 1/T are linear for both isozymes in both hydration and dehydration reactions, indicating that the rate-determining steps remain unchanged over this temperature range. The 37°C hydration kc, , at pH 7.5, is 13 X 10‘ s-’ for isozyme C and 0.71 X lo6 s-’ for isozyme B. K,, for hydration, is 10 m~ for C and 5 m~ for B, and invariant with temperature. The uncatalyzed reactions are significantly affected by temperature, 30to 40-fold rate enhancements being observed from 0’ to 37°C. The enzyme-catalyzed processes are much less sensitive to temperature, the rate enhancements being 2to %fold for HCAB and 5to 6-fold for HCAC in this temperature range. These observations are consistent with a significant lowering of the free energy of activation by both isozymes. This effect is greater for C accounting for its higher catalytic power. The enthalpy of activation, at pH 7.5 and 8.2, in the rate-limiting step is considerably less for the B enzyme compared to C. This is, however, more than offset by a large negative entropy of activation in the case of HCAB. This observation indicates either a mechanistic difference in the rate-limiting events or a difference in the structural organizations of the active sites of the two isozymes, or both.
منابع مشابه
Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملCarbonic anhydrase under pressure
Investigations of the rapid enzyme carbonic anhydrase have now been extended by crystallographic analysis at high CO2 pressures to examine the movements of water molecules in different steps of the catalysis. The rate of catalysis seems well explained by the assembled observations.
متن کاملpH Dependence Study of the Kinetic Reaction of Bovine Carbonic Anhydrase with 2,2'-Dithiobispyridine in the Absence and Presence of Surfactants
The pH dependence study reveals that the Cys 206 sulphydryl group of bovine carbonicanhydrase in the native form is not exposed. During the reaction of 2,2'-dithiobispyridine (2-DTP) with the enzyme, there was no absorbance change recorded. In the presence ofsurfactants, the pH dependence profiles of the apparent second order rate constants, kapp, forthe reaction of 2-DTP with bovine carbonic a...
متن کاملStudy of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods
Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...
متن کاملComparison of 18O exchange catalyzed by isoenzymes of carbonic anhydrase.
We compare the effect of buffers on the catalysis by bovine carbonic anhydrase, human carbonic anhydrase C (HCA 0, and human carbonic anhydrase B (HCA B) of two types of ‘“0 exchange. Type I, resulting from the hydrationdehydration reaction, is the exchange of IsO between CO, and water. Type II is the exchange of IsO between ‘*Ccontaining and ‘“C-containing species of COZ. Imidazole, 2,4-lutidi...
متن کامل