Feature encoding for unsupervised segmentation of color images

نویسندگان

  • N. Li
  • Y. F. Li
چکیده

In this paper, an unsupervised segmentation method using clustering is presented for color images. We propose to use a neural network based approach to automatic feature selection to achieve adaptive segmentation of color images. With a self-organizing feature map (SOFM), multiple color features can be analyzed, and the useful feature sequence (feature vector) can then be determined. The encoded feature vector is used in the final segmentation using fuzzy clustering. The proposed method has been applied in segmenting different types of color images, and the experimental results show that it outperforms the classical clustering method. Our study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Unsupervised Color Texture Feature Extraction and Selection for Soccer Image Segmentation

In this paper, we describe a new approach for color texture feature extraction and selection. We define color texture features as texture features which are computed by taking into account the color components of the pixels. We determine the most discriminating color texture features among a multidimensional set of color texture features by means of an iterative feature selection procedure asso...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised construction of fuzzy measures through self-organizing feature maps and its application in color image segmentation

The paper presents a framework for the segmentation of multi-dimensional images, e.g., color, satellite, multi-sensory images, based on the employment of the fuzzy integral, which undertakes the classification of the input features. The framework makes use of a self-organizing feature map, whereby the coefficients of the fuzzy measure are determined. This process is unsupervised and therefore c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2003