STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia
نویسندگان
چکیده
We recently reported that chronic myeloid leukaemia (CML) patients harbour high levels of STAT5 when they progress to advanced phases of disease. Advanced disease is characterized by an increased incidence of BCR-ABL1 mutations. We now describe a highly significant correlation between STAT5 expression and the incidence of BCR-ABL1 mutations in primary CML. Forced expression of STAT5 in murine BCR-ABL1 transformed cells sufficed to enhance the production of reactive oxygen species (ROS) and to trigger DNA damage. STAT5-mediated ROS production is independent of JAK2 but requires concomitant BCR-ABL1 signalling as forced STAT5 expression in untransformed BCR-ABL1 negative cells has no impact on ROS levels. Only within the context of a BCR-ABL1 positive cell does STAT5 transcriptionally regulate a target gene or set of genes that causes the enhanced ROS production. Our study suggests the existence of a feed-forward loop accelerating disease progression, in which BCR-ABL1 enhances its own mutation rate in a STAT5-ROS dependent manner. This model explains the increased occurrence of inhibitor-resistant BCR-ABL1 mutations in advanced disease stages driven and characterized by high STAT5 expression.
منابع مشابه
Coexistence of BCR-ABL1 Translocation and JAK2 V617F Mutation in a Patient with Chronic Myeloid Leukemia Under Long-term Treatment with Imatinib and Nilotinib: A Case Report
This report describes an 89-year-old woman diagnosed with Philadelphia positive Chronic Myeloid Leukemia in 2007 who was initially treated with 200 mg/day imatinib. The patient demonstrated complete molecular response (CMR) in two tests in 2015 and 2018. During treatment between 2007 and 2019, despite increased dosage of imatinib and switching her therapy to nilotinib, complete hematological r...
متن کاملCombined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia
In chronic myeloid leukemia, resistance against BCR-ABL1 tyrosine kinase inhibitors can develop because of BCR-ABL1 mutations, activation of additional pro-oncogenic pathways, and stem cell resistance. Drug combinations covering a broad range of targets may overcome resistance. CDDO-Me (bardoxolone methyl) is a drug that inhibits the survival of leukemic cells by targeting different pro-surviva...
متن کاملMYELOID NEOPLASIA Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2V617F in mice
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine...
متن کاملHigh STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia.
In BCR-ABL1(+) leukemia, drug resistance is often associated with up-regulation of BCR-ABL1 or multidrug transporters as well as BCR-ABL1 mutations. Here we show that the expression level of the transcription factor STAT5 is another parameter that determines the sensitivity of BCR-ABL1(+) cells against tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, or dasatinib. Abelson-transfo...
متن کاملRapid Evolution to Blast Crisis Associated with a Q252H ABL1 Kinase Domain Mutation in e19a2 BCR-ABL1 Chronic Myeloid Leukaemia
A minority of chronic myeloid leukaemia (CML) patients express variant transcripts of which the e19a2 BCR-ABL1 fusion is the most common. Instances of tyrosine kinase inhibitor (TKI) resistance in e19a2 BCR-ABL1 CML patients have rarely been reported. A case of e19a2 BCR-ABL1 CML is described in whom imatinib resistance, associated with a Q252H ABL1 kinase domain mutation, became apparent soon ...
متن کامل