Symmetry Reduction of Optimal Control Systems and Principal Connections

نویسنده

  • Tomoki Ohsawa
چکیده

This paper explores the role of symmetries and reduction in nonlinear control and optimal control systems. The focus of the paper is to give a geometric framework of symmetry reduction of optimal control systems as well as to show how to obtain explicit expressions of the reduced system by exploiting the geometry. In particular, we show how to obtain a principal connection to be used in the reduction for various choices of symmetry groups, as opposed to assuming such a principal connection is given or choosing a particular symmetry group to simplify the setting. Our result synthesizes some previous works on symmetry reduction of nonlinear control and optimal control systems. Affine and kinematic optimal control systems are of particular interest: We explicitly work out the details for such systems and also show a few examples of symmetry reduction of kinematic optimal control problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reductions9

In this paper we establish necessary conditions for optimal control using the ideas of Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such an approach is that it makes use of the special structure of the system, espcially its symmetry structure and thus it l...

متن کامل

The Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials

‎In this paper‎, ‎we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays‎. ‎Constant or pantograph delays may appear in state-control or both‎. ‎We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then‎, ‎these are utilized to reduce the solution of optimal control with constant...

متن کامل

A Discrete Theory of Connections on Principal Bundles

Connections on principal bundles play a fundamental role in expressing the equations of motion for mechanical systems with symmetry in an intrinsic fashion. A discrete theory of connections on principal bundles is constructed by introducing the discrete analogue of the Atiyah sequence, with a connection corresponding to the choice of a splitting of the short exact sequence. Equivalent represent...

متن کامل

Connections for general group actions

Principal bundles serve as a powerful and elegant geometric framework for analyzing group actions and symmetry. Beyond their geometric origins, principal bundles play significant roles in the analysis of mechanical systems with symmetry, as well as the design of appropriate computational algorithms. A connection on a principal bundle is defined as an equivariant decomposition of vectors into in...

متن کامل

Optimal Control Pressure for Leakage Minimization in Water Distribution Systems Using Imperialist Competitive Algorithm

One of the key factors affecting leakage in water distribution systems is network pressure management by putting Pressure Reduce Valves (PRV) in the flow path and optimal regulation of these vales in water networks. This study aimed at investigating optimal pressure management problems so as to minimize leakage in water distribution networks. To do so, an approach was proposed for both optimal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013