Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes).

نویسندگان

  • Vadym N Borysiuk
  • Vadym N Mochalin
  • Yury Gogotsi
چکیده

Two-dimensional materials beyond graphene are attracting much attention. Recently discovered 2D carbides and nitrides (MXenes) have shown very attractive electrical and electrochemical properties, but their mechanical properties have not been characterized yet. There are neither experimental measurements reported in the literature nor predictions of strength or fracture modes for single-layer MXenes. The mechanical properties of two-dimensional titanium carbides were investigated in this study using classical molecular dynamics. Young's modulus was calculated from the linear part of strain-stress curves obtained under tensile deformation of the samples. Strain-rate effects were observed for all Tin+1Cn samples. From the radial distribution function, it is found that the structure of the simulated samples is preserved during the deformation process. Calculated values of the elastic constants are in good agreement with published DFT data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries.

Recently a group of two-dimensional materials called MXenes have been discovered and they have demonstrated their potential in Li rechargeable batteries. Herein, the Na storage and ion migration properties of M2C-type MXenes (M = Ti, V, Cr, Mn, Fe, Co, Ni, Nb, Mo) were investigated using density functional theory (DFT) calculations, and were compared to the Li case. Based on the average voltage...

متن کامل

Production of Fe-TiN and Fe-Ti(N,C) composite powders by mechanical alloying

In this research, the production of Fe-TiN and Fe-Ti(N,C) composite powders by mechanical alloying was investigated and evaluated. Ferrotitanium (containing 70%Ti), titanium and graphite were used as the raw materials. Initial mixtures were milled in different time durations under the pure nitrogen atmosphere with the pressure of 5atm. The results showed that when N2 pressure is 5 at...

متن کامل

Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying

In this paper, Cu-Ti nanocomposite synthesized via ball milling of copper-titanium powders in 1, 3, and 6 of weight percentage compounds. The vial speed was 350 rpm and ball to powder weight ratio kept at 15:1 under Argon atmosphere, and the time of milling was 90 h. Obtained powders were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS)....

متن کامل

TiC2: a new two-dimensional sheet beyond MXenes.

MXenes are attracting attention due to their rich chemistry and intriguing properties. Here a new type of metal-carbon-based sheet composed of transition metal centers and C2 dimers rather than individual C atom is designed. Taking the Ti system as a test case, density functional theory calculations combined with a thermodynamic analysis uncover the thermal and dynamic stability of the sheet, a...

متن کامل

Ti-Cr-N Coatings Deposited by Physical Vapor Deposition on AISI D6 Tool Steels

In this study, physical vapor deposition (PVD) Ti-Cr-N coatings were deposited at two different temperatures 100 and 400ºC on hardened and tempered tool steel substrates. The influence of the applied deposition temperature on the physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and Young’s modulus were evaluated. Phase compositions were st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 26 26  شماره 

صفحات  -

تاریخ انتشار 2015