Topological strings live on attractive manifolds
نویسنده
چکیده
We add to the mounting evidence that the topological B model’s normalized holomorphic three-form has integral periods by demonstrating that otherwise the B2-brane partition function is ill-defined. The resulting Calabi-Yau manifolds are roughly fixed points of attractor flows. We propose here that any admissible background for topological strings requires a quantized (twisted) integrable pure spinor, yielding a quantized (twisted) generalized Calabi-Yau structure. This proposal would imply in particular that the A model is consistent only on those Calabi-Yau manifolds that correspond to melting crystals. When a pure spinor is not quantized, type change occurs on positive codimension submanifolds. We find that quantized pure spinors in topological A-model instead change type only when crossing a coisotropic 5-brane. Quantized generalized Calabi-Yau structures do correspond to twisted K-theory classes, but some twisted K-theory classes correspond to either zero or to multiple structures.
منابع مشابه
Black hole entropy and topological strings on generalized CY manifolds
The H. Ooguri, A. Strominger and C. Vafa conjecture ZBH = |Ztop| is extended for the topological strings on generalized CY manifolds. It is argued that the classical black hole entropy is given by the generalized Hitchin functional, which defines by critical points a generalized complex structure on X. This geometry differs from an ordinary geometry if b1(X) 6= 0. In a critical point the genera...
متن کاملCompactifications of Heterotic Theory on Non-Kähler Complex Manifolds: I
We study new compactifications of the SO(32) heterotic string theory on compact complex non-Kähler manifolds. These manifolds have many interesting features like fewer moduli, torsional constraints, vanishing Euler character and vanishing first Chern class, which make the four-dimensional theory phenomenologically attractive. We take a particular compact example studied earlier and determine va...
متن کاملG 2 Manifolds , Mirror Symmetry and Geometric Engineering
We construct Calabi-Yau geometries with wrapped D6 branes which realize N = 1 supersymmetric A r quiver theories, and study the corresponding geometric transitions. This also yields new large N dualities for topological strings generalizing topological strings/large N Chern-Simons duality. Lifting up to M-theory yields smooth quantum geometric transitions without branes or fluxes, in the contex...
متن کاملNonperturbative Effects and the Large–Order Behavior of Matrix Models and Topological Strings
This work addresses nonperturbative effects in both matrix models and topological strings, and their relation with the large–order behavior of the 1/N expansion. We study instanton configurations in generic one–cut matrix models, obtaining explicit results for the one–instanton amplitude at both one and two loops. The holographic description of topological strings in terms of matrix models impl...
متن کاملChern-Simons Theory and Topological Strings
We review the relation between Chern-Simons gauge theory and topological string theory on noncompact Calabi-Yau spaces. This relation has made possible to give an exact solution of topological string theory on these spaces to all orders in the string coupling constant. We focus on the construction of this solution, which is encoded in the topological vertex, and we emphasize the implications of...
متن کامل