A robust speech disorders correction system for Arabic language using visual speech recognition

نویسندگان

  • Ahmed Farag Seddik
  • Mohamed El Adawy
  • Ahmed Ismail
چکیده

In this Paper, we propose an automatic speech disorders recognition technique based on both speech and visual components analysis. First, we performed the pre-processing steps required for speech recognition then we chose the Mel-frequency cepstral coefficients (MFCC's) as features representing the speech signal.On the other hand, we studied the visual components based on lipsmovements analysis. We propose a new technique that integrates both the audio signal and the video signal analysis techniques for increasing the efficiency of the automated speech disorders recognition systems. The main idea is to detect the motion features from a series of lipsimages. A new technique for lips movement detection is proposed. Finally we use the multilayer neural network as a classifier for both speech and visual features.We propose a new technique for speech disorders correction systems, especially for Arabic language. Practical experiments showed that our system is useful when dealing with Arabic language speech disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

185-192- Farag

In this Paper, we propose an automatic speech disorders recognition technique based on both speech and visual components analysis. First, we performed the pre-processing steps required for speech recognition then we chose the Mel-frequency cepstral coefficients (MFCC's) as features representing the speech signal.On the other hand, we studied the visual components based on lipsmovements analysis...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Spoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting

Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013